1. About the data set

Site name (three code)	letter	Tomakomai Flux research site (TMK)			
Period of registered of	riod of registered data From January 1, 2001 to December 31, 2003				
This document file na	ame	FxMt_TMK_2003_30m_03-1.pdf			
Corresponding dat name	a file	FxMt_TMK_2003_30m_03-1.csv			
Revision information					
Date		Details of revision	Renewed file name		
January 28, 2008	First ree	gistration	Siln_TMK_2001_04.pdf FxMt_TMK_2003_30m_01.pdf FxMt_TMK_2003_30m_01.csv		
June 11, 2021	Contact persons were updated. Notation of date was revised. DOI (Digital Object Identifier) was assigned.		Siln_TMK_2001-2003_05.pdf FxMt_TMK_2003_30m_03-1.pdf FxMt_TMK_2003_30m_03-1.csv		
Contact person#1	[Flux] R	yuichi Hirata (hirata.ryuichi@nies.go.jp)			
Contact person#2	[Genera	al] Yoshiyuki Takahashi (yoshiyu@nies.go.jp)			
Contact person#3	[Genera	al] Takashi Hirano (hirano@env.agr.hokudai.ac.jp)			
Other information	Hirata, Ver.x.x *1 The	his data set is referred to in publications, it should be cited in the following format. R. (2021), Micrometeorological CO2 Flux Data at Tomakomai Flux Research Site (TMK) *1, NIES, DOI:10.17595/20210611.001, (Reference date*2: YYYY/MM/DD) version number is indicated in the name of each data file. ne reference date, please indicate the date you downloaded the files.			

2. Site description

 \odot to Data provider ……… Please explain the site condition during the period of this dataset.

Hour line (Time difference from UTC)	9 hours ahead of UTC (Japan Standard Time (JST))			
Vegetation Type	Japanese larch forest			
Dominant Species (Overstory)	Japanese larch (<i>Larix Kaempferi Sarg.</i>), Birch (<i>Betula ermanii</i> and <i>Betula platyphylla</i>), Japanese elm (<i>Ulmus japonica</i>), Spruce (<i>Picea jezoensis</i>)			
Dominant Species (Understory)	Fern (Dryopteris crassirhizoma, Dryopteris austriaca) and Pachysandra terminalis			
Canopy height	About 15 m			
LAI	9.2 m ² m ⁻² (max) (Overstory: 5.6 m ² m ⁻² , Understory: 3.6 m ² m ⁻²)			
Other information	Details are described by Hirata et al. (2007). Hirata, R., Hirano, T., Saigusa, N., Fujinuma, Y., Inukai, K., Kitamori, Y., Yamamoto, S. 2007. Seasonal and interannual variations in carbon dioxide exchange of a temperate larch forest, Agricultural and Forest Meteorology, 147: 110–124.			

3. Observation and calculation

© to Data provider A list of references is shown in the last page. Please fill-in the blanks as much as possible, or select the suitable option. If you are not sure what to write, leave it as a blank.

3-1. Flux observation system and data acquisition

Type of sonic anemometer	DA600-3TV (Probe TR-61C) (KAIJO)
Type of IRGA	Open-path CO ₂ /H ₂ O gas analyzer, LI-7500 (LI-COR) (H, LE)
	Closed-path CO ₂ /H ₂ O gas analyzer, LI-6262 (LI-COR) (Fc)
Sampling rate	10 Hz
Averaging time	30 min
Flux measurement height #1	22 m above the ground (from January 1, 2001 to May 28, 2001)
Flux measurement height #2	27 m above the ground (from May 28, 2001 to December 2003)
Flux measurement height #3	
Zero-plane displacement	11.2 m
Roughness length	
	Open-path analyzer was calibrated approximately every two months with
	standard CO2 gases and a dew point generator (LI610, LI-COR).
Calibration information	The gain of CO2 of the closed-path analyzer was checked once a day by
	flowing two standard CO2 gases of 320 ppmv and 420 ppmv that were
	automatically controlled using a CR23X (LI-COR).
Other information	

3-2. Flux calculation

		Note/References			
Flow attenuation *4-6	✓ Yes	Shimizu, T. et al., 1999. Boundary-Layer Meteorol., 64: 227–236.			
Coordinate rotation *1-3	✓ Planar fit				
Lag removal *2, 7, 8	✓ Constant	Digital delay for LI7500 and DA-600 Time lag between w and c for closed-path system			

3-3. Flux corrections

		Note/References
For conside boot flux	✓ Cross wind correction *9, 10	
For sensible heat flux	✓ Water vapor correction ^{*11}	
	• [u*, H, LE]	
High frequency loss	✓ Moor (1986) *15	
	(Correction for path length and sensor separation)	

	• [Fc]	
	✓ Experimental approach *2	
Low frequency loss *16		
(Detrending)	✓ Block average	
WPL Correction*17-21	✓ For latent heat (LE) flux	
	✓ For CO₂ flux	
	✓ Temperature dependency for latent heat: L	
Others *22-24	✓ Temperature dependency for air density	
	\checkmark Pressure dependency for air density	

3-4. Quality control *25-26

		Note/References
Raw data test	 ✓ Spike test *27 ✓ Absolute limits 	
Non steady state test	✓ YES	
Integral turbulence characteristics	✓ YES (u*)	
Correlation coefficient	✓ Not applied	
Wind direction	✓ YES	Data with wind blowing from the tower were excluded to remove the tower's influence on measurements.
Footprint test *28, 29	✓ Not applied	
Absolute thresholds	✓ YES	
Others	\checkmark	

3-5. Storage term

		Note/References
		From CO ₂ profile data (26, 22, 16, 12, 6, 3,
		1 m)
Storage term	• [CO ₂]	When CO_2 profile data were missing, CO_2
		data at the flux measuring height was
		used.

3-6. Other information

© to Data provider If your flux data were evaluated by gradient method, please explain the observation method here.

	Note/References

4. Registered Data

Observation items	Symbol	Unit	Height(s) Depth(s)	Instruments	Level of data processing
Year	Year	#### (YYYY)	****	****	
Date	DOY	1~365	****	***	
Time	TIME	#### (HHMM)	****	****	
CO ₂ flux	Fc	micoromol • m ⁻² • s ⁻¹	27 m	Three-dimensional sonic anemometer-thermomet er (DA-600-3TV (Probe TR-61C), KAIJO) and closed-path CO ₂ /H ₂ O analyzer (LI6262,	Quality-controlled
Net ecosystem carbon exchange	NEE	micoromol • m ⁻² • s ⁻¹	-	LI-COR) CO ₂ flux + CO ₂ storage in canopy air layer	Quality-controlled
Sensible heat flux	н	W∙m ⁻²	27 m	Three-dimensional sonic anemometer-thermomet er (DA-600-3TV (Probe TR-61C), KAIJO, Japan) and open-path CO ₂ /H ₂ O analyzer (LI7500, LI-COR)	Quality-controlled
Latent heat flux	LE	W∙m ⁻²	27 m	Three-dimensional sonic anemometer-thermomet er (DA-600-3TV (Probe TR-61C), KAIJO, Japan) and open-path CO ₂ /H ₂ O analyzer (LI7500, LI-COR)	Quality-controlled
Friction velocity	USt	m∙s ⁻¹	27 m	Three-dimensional sonic anemometer-thermomet er (DA-600-3TV (Probe TR-61C), KAIJO)	Quality-controlled
Atmospheric stability parameter	ZL	-			
Global solar radiation (incoming)	Rg	W∙m ⁻²	40 m	Pyranometer (MS-601, Eko, Japan)	Quality-controlled
Global solar radiation (incoming)	Rg_gf	W∙m²	40 m	Pyranometer (MS-601, Eko, Japan)	Gap filled
Global solar radiation (outgoing)	Rg_out	W∙m²	40 m	Radiometer (MR40, Eko, Japan)	Quality-controlled
Long-wave radiation (incoming)	Rgl	W∙m²	40 m	Radiometer (MR40, Eko, Japan)	Quality-controlled
Long-wave radiation	Rgl_out	W∙m ⁻²	40 m	Radiometer (MR40, Eko,	Quality-controlled

(outgoing)				Japan)	
Net Radiation	Rn	W∙m²	40 m	Radiometer (MR40, Eko, Japan)	Quality-controlled
Net Radiation	Rn_gf	W∙m⁻²	40 m	Radiometer (MR40, Eko, Japan)	Gap filled
Transmitted global solar radiation	TRg	W∙m ⁻²	2 m (five point-averag -e)	Radiometer (MR40, Eko, Japan)	Quality-controlled
Absorbed global solar radiation	ARg	W∙m²		ARg=Rg-Rg_out-TRg	Quality-controlled
Albedo	Alb		40 m	Alb=Rg_out/Rg	Quality-controlled
Photosynthetic active photon flux density	PPFD	micoromol·m ⁻² ·s ⁻¹	40 m	Quantum sensor (LI-190S, LI-COR)	Quality-controlled
Photosynthetic active photon flux density	PPFD_gf	micoromol·m ⁻² ·s ⁻¹	40 m	Quantum sensor (LI-190S, LI-COR)	Gap filled
Reflected PAR	RPAR	micoromol·m ⁻² ·s ⁻¹	40 m	Quantum sensor (LI-190S, LI-COR)	Quality-controlled
Transmitted PAR	TPAR	micoromol • m ⁻² • s ⁻¹	2 m (two point-averag e)	Quantum sensor (LI-190S, LI-COR)	Quality-controlled
Absorbed PAR	APAR	micoromol·m ⁻² ·s ⁻¹		APAR=PPFD-RPAR -TPAR	Quality-controlled
PAR Albedo	Alb_PAR	-	40 m	AlbPAR=RPAR/PPFD	Quality-controlled
Wind direction	WD	degrees	27 m	Sonic anemometer (MA-130A, Eko, Japan)	Quality-controlled
Wind speed	WS	m∙s⁻¹	27 m	Sonic anemometer (MA-130A, Eko, Japan)	Quality-controlled
Barometric pressure	Ра	kPa	40 m	Barometer (PTB100, Vaisala)	Quality-controlled
Air temperature	Ta_27m	degrees C	27 m	Platinum resistance thermometers and capacitive hygrometer (HMP45D, Vaisala)	Quality-controlled
Air temperature	Ta_27m_gf	degrees C	27 m	Platinum resistance thermometers and capacitive hygrometer (HMP45D, Vaisala)	Gap filled
Air temperature	Ta_14m	degrees C	14 m	Platinum resistance thermometers and capacitive hygrometer (HMP45D, Vaisala)	Quality-controlled
Air temperature	Ta_14m_gf	degrees C	14 m	Platinum resistance thermometers and capacitive hygrometer (HMP45D, Vaisala)	Gap filled
Vapor pressure deficit	VPD_27m	kPa	27 m	Platinum resistance thermometers and	Quality-controlled

				capacitive hygrometer	
				(HMP45D, Vaisala)	
Vapar progura dafiait	VPD_27m_	kPa	27 m	Platinum resistance	
Vapor pressure deficit	gf	кга		thermometers and	
	0			capacitive hygrometer	Gap filled
				(HMP45D, Vaisala)	
N/ 1.0.1			14 m	Platinum resistance	
Vapor pressure deficit	VPD_14m	kPa	14111	thermometers and	
				capacitive hygrometer	Quality-controlled
			14 m	(HMP45D, Vaisala)	
Vapor pressure deficit	VPD_14m_ gf	kPa	14 m	Platinum resistance	
	gi			thermometers and	Gap filled
				capacitive hygrometer	
				(HMP45D, Vaisala)	
				Platinum resistance	
Relative humidity	Rh_27m	%	27 m	thermometers and	Quality-controlled
	_			capacitive hygrometer	
				(HMP45D, Vaisala)	
				Platinum resistance	
Relative humidity	Rh_14m	%	14 m	thermometers and	Quality-controlled
Relative numberly	101_1411	70	14111	capacitive hygrometer	Quality controlled
				(HMP45D, Vaisala)	
				Tipping-bucket	If data were
				rainguage with heater	missing, we
	PPT			(52 202, R. M. Young)	gap-filled using
Precipitation		mm	40 m		data from the
					nearest
					meteorological
					station
					G was calculated
					by adding the
					heat storage
				Heat flux plate (MF-81,	change in the
			0.05 m (five	Eko, Japan) and	topsoil layer
Ground heat flux	G	W∙m²	point-averag	Platinum resistance	above the heat
			e)		
				thermometer	plates to
					conductive soil
					heat flux (MF-81).
					Quality-controlled
	_		0.05 m (three	Platinum resistance	
Soil temperature	Ts_5cm	degrees C	point-averag	thermometer	Quality-controlled
			e)		
			0.05 m (three	Platinum resistance	
Soil temperature	Ts_5cm_gf	degrees C	point-averag	thermometer	Gap filled
			e)		
			0.1 m (three	Platinum resistance	
Soil temperature	Ts_10cm	degrees C	point-averag	thermometer	Quality-controlled
	1		1	nemometer	1

Soil temperature	Ts_20cm	degrees C	0.2 m (three point-averag e)	Platinum resistance thermometer	Quality-controlled
Soil temperature	Ts_50cm	degrees C	0.5 m (three point-averag e)	Platinum resistance thermometer	Quality-controlled
Soil water content	SWC_5cm	m ³ m ⁻³	0.05 m (three point-averag e)	TDR sensor (CS615, Campbell)	Quality-controlled
Soil water content	SWC_10c m	m ³ m ⁻³	0.1 m (three point-averag e)	TDR sensor (CS615, Campbell)	Quality-controlled

5. Note for data users

The figure of "-99999" denotes missing or rejected data.

6. Important events

© to Data provider..... Please list noteworthy events during the observation period. For example, relocation of the instruments, reasons for missing observation, dates of sowing and harvesting at agricultural site should be listed in the table by date.

Date	Events		
May 28, 2001	Flux measuring height was changed from 22 to 27 m.		
October 10, 2001	Direction of flux measuring boom was changed from 153 to 273 degrees.		

References

Flux calculation

- *1 McMillen, R.T., 1988. Boundary-Layer Meteorology, 43: 231-245.
- *2 Aubinet M. et al.,2000. Advances in Ecological Research, 30: 113-175.
- *3 Wilczak. J.M., Oncley, S.P. and Stage, S.A., 2001. Boundary-Layer Meteorology, 99: 127-150.
- *4 Wyngaard, J. C. and Zhang, S. F., 1985. J. Atmos. Oceanic Tech., 2: 548-558.
- *5 Kaimal, J.C. et al., 1990. Boundary-Layer Meteorol., 53: 103-115.
- *6 Shimizu, T. et al., 1999. Boundary-Layer Meteorol., 64: 227–236.
- *7 Leuning, R. and Judd M.J., 1996. Global Change Biology, 2: 241-254.
- *8 Information from Li-Cor

Flux correction

- *9 Schotanus, P. et al., 1983. Boundary-Layer Meteorology, 26: 81-93.
- *10 Liu, H., Peters, G. and Foken, T., 2001. Boundary-Layer Meteorology, 100: 459-468.
- *11 Kaimal J.C. and Gaynor, J.E., 1991. Boundary-Layer Meteorology, 56: 401-410.
- *12 Watanabe et al., 2000. Boundary-Layer meteorol. 96, 743-491.
- *13 Massman, W. J., 2000. Agric. For. Meteorol. 104, 185-198
- *14 Massman, W. J., 2001. Agric. For. Meteorol. 107, 247-251
- *15 Moore, C.J., 1986. Boundary-Layer Meteorology, 37: 17-35.
- *16 Moncrieff, J. et al., 2004. Averaging, detrending and filtering of eddy covariance time series. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 7-31.
- *17 Webb, E. K., Pearman, G.I. and Leuning, R., 1980. Quarterly Journal of the Royal Meteorological Society, 106: 85-100.
- *18 Fuehrer, P.L. and Friehe, C.A., 2002. Boundary-Layer Meteorology, 102: 415-457.
- *19 Liebethal, C. and Foken, T., 2003. Boundary-Layer Meteorology, 109: 99-106.
- *20 Leuning, R. 2004. Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL corrections revisited. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 119-132.
- *21 Massman, W. 2004. Concerning the measurement of atmospheric tarce gas fluxes with open- and closed-path eddy covariance system: The WPL terms and spectral attenuation. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 133-160.
- *22 Fischer, G (Editor), 1988. Landolt-Börnstein, Numerical data and functional relationships in science and technology, Group V: Geophysics and space research, Volume 4: Meteorology Subvolume b: Physical and chemical properties of the air. Springer, Berlin, Heidelberg, 570pp.
- *23 Stull, R.B., 1988. An Introduction to Boundary Layer meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666pp.
- *24 Cohen, E. R. and Taylor, B. N., 1986. The 1986 adjustment of the fundamental physical constants. Internatinal Counsil of Scientific Unions (ICSU), Committee on Data for Science and Technology (CODATA). CODATA-Bulletin, No. 63: 36pp.

Quality control

- *25 Vickers, D. and Mahrt, L., 1997. Journal of Atmospheric and Oceanic Technology, 14: 512-526.
- *26 Foken, T. and Wichura, B., 1996. Agricultural and Forest Meteorology, 78: 83-105.
- *27 Hojstrup, J., 1993. Measuring Science Technology, 4: 153-157.
- *28 Schmid, H. P., 1994. Boundary-Layer Meteorology, 67: 293-318.
- *29 Korman, R. and Meixner, F.X., 1990. . Boundary-Layer Meteorology, 99: 207-224.