International Symposium on Southeast Asian Tropical Forest Research related with Climate Change and Biodiversity

A model-based assessment of the impacts of land-use change in Southeast Asia for mitigation and adaptation

Akihiko Ito, Minaco Adachi, Yoshiki Yamagata National Institute for Environmental Studies

Land-use change and biomass

Global estimation (preliminary)

Land-use (inc. croplands) 1901~1990

(Data: Hurtt et al. 2006)

LUC emission: 1990s

(Ito et al. in preparation)

Oil palm plantation in SE Asia

Fitzherbert et al. (2008), Koh (2007)

Fitzherbert et al. (2008)

Ecosystem services

=> biofuel crop

=> mitigation

=> biodiversity => resilience / adaptation?

Best mix?

cropland with restored ecosystem services

Ecosystem service evaluation

Environmental Research Fund by the Ministry of Environment

"Development of Evaluation Method of Ecosystem Services to Find Good Balance between Climate Change Prevention and Biodiversity Conservation [F-1101]" FY2011–2013 by

- NIES
- JAMSTEC
- MRI

at

- Kushiro, Japan
- Yokohama, Japan
- Lambir/Pasoh

Terrestrial C&N-cycle model

Vegetation Integrated SImulator for Trace gases

Objectives

(Developed in NIES & FRCGC-JAMSTEC)

- Atmosphere-ecosystem biogeochemical interactions
- Assessment of climatic impacts and biotic feedbacks
- Ecosystem functions related to ecosystem services

Point-global, daily-monthly

- CO₂: photosynthesis & respiration
- CH₄: production & oxidation
- N₂O: nitrification & denitrification
- LUC emission: cropland conversion
- Fire emission: CO₂, CO, BC, etc.
- BVOC emission: isoprene etc.
- Others: N₂, NO, NH₃, erosion

Carbon-cycle (Sim-CYCLE-based) Nitrogen-cycle

Climate projection

IPCC (2007), Nohara et al. (2006)

Ecosystem projection

(climate: MIROC-h A1B)

Regional-scale study

Land cover (MODIS) => 1km mesh

Model estimation

Time-series of forest cover

(NOAA-AVHRR, SPOT-VEGETATION, TERRA-MODIS)

(data by W. Takeuchi of IIS, University of Tokyo)

1st guess

Revised estimation

area of oil palm plantation increases.

Land-use change and C budget

Area of oil palm during 6 years: 147,815km²

Peat lands and oil palm plantations

Drainage may result in more CO_2 emission but less CH_4 emission.

Koh et al. (2011)

Conclusion

• Impacts of rapid land-use change (e.g., oil palm plantation) in Southeast Asia should be clarified in a scientific manner.

- Ecosystem service would be a key term in considering ecosystem management under climate change and land-use change, toward mitigation and adaptation.
- Advanced monitoring and ecosystem modeling, including regional characteristics (e.g., peat lands), are required.
- Future works: biodiversity loss, total GHG appraisal, evaluation of mitigation/adaptation options etc.

Ecosystem services

