International Symposium on Southeast Asian Tropical Rain Forest Research related with Climate Change and Biodiversity September 25, 2012

A common character of forest evapotranspiration in response to climate change

TANI, Makoto Kyoto University

INTRODUCRTION

Evapo Transpiration

ET is controlled by the atmospheric demand but also by soil dryness

Forest *ET* also has a feedback impact on climate through the heat exchange

10

INTRODUCRTION

Main Question

Forest uses much water as ET.

Will climate warming accelerate it?

A report suggests its decrease due to soil water control (Jung et al.: Nature, 1910)

The purpose is to detect the nature and trend of forest ET from a Long-Term catchment study

The purpose is to detect the nature and trend of forest ET from a Long-Term catchment study

Tatsunokuchi-yama Experimental Forest conducted by Forestry and Forest Products Research Institute Since 1937

Profile of KT catchments	
Location	Near Okayama 34 ° 42' N, 133 ° 58' E
Geology	Permian accretionary complex with quartz porphyry (the north portion)
Precipitation	1220 mm (annual amount, 1937-2005)
Air temperature	13.8 °C (annual av. 1937-2005)
Soil	Clay loam
Catchment area	17.27ha
Slope	28.4 °
Slope length	123m
Vegetation changes	
1937	Natural pine forest
1944-47	Pine death clearcut
1948-around 1957	Cutover
Around 1958 -	Growth of deciduous forest

Trend analysis

Cumulative Anomalies Curve (Lozowski, 1989; Ding, 2007) AC

$$f_i = \mathop{\mathbf{a}}_{k=1}^{i} (x_k - \overline{x})$$

was used to detect a trend of the long-term hydrometeorological records

METHODS Storage effect on ET

Loss from water balance as Rainfall (*P*) –Runoff (*Q*) is lower than *EvapoT*ranspiration by storage decrease

$$S_2 - S_1 = \mathsf{D}S = P - Q - ET = L - ET$$
$$ET = L - \mathsf{D}S$$

Storage effect on ET

Loss from water balance as Rainfall (*P*) –Runoff (*Q*) is lower than *EvapoT*ranspiration by storage decrease

L in a dry year looks very small compared to that in a usual year,

but the baseflow rate at the end of year decreases than that of the previous year.

suggesting an underestimation of ET in this dry year.

ET in each year involves a storage change effect Baseflow rate as its indicator

RESULTS

The purpose is to detect the nature and trend of forest ET from a Long-Term catchment study

Long-term trend

^{13.8} Air temperature low in 1960s and 70s, average in 1980s high after 1990

Loss is flat compared to Precipitation

Loss

average before pine death in 1943 low for the forest absence 44-58 average around 1960 slightly low during 1960s and 70s low after pine death in 1980 high after 1987

RESULTS

Effect of climate

Mean ET was calculated in each period with the negligible storage effect

ET became larger with temperature increase and precipitation decrease

The dependency of ET on temperature was clearer

ET was enormously large in 1992-2001

ET is low during the forest absence in 1944-57 regardless of the climate condition

RESULTS

ET in each year

The ET amount and the effect of storage were compared before and after the pine death in 1943

This storage effect was only for forest but lost after the pine death

RESULTS Forest ET against dryness

Correlation of the annual loss to the baseflow increase / decrease in each year suggests a sustainability of ET by consuming water storage

Only forest ET is persistent using soil water in a dry year

ET follows demand

Our analysis on catchment water balance in KT demonstrates forest ET continuously responded to the atmospheric demand (temperature)

Forest follows the atmospheric demand regardless of dryness

ET follows demand

Ecosystem resilience is at a crisis point by the present quick climate change

How about tropical forest?

Monthly P and Soil water (Upper), and available energy (radiation - heat storage), latent heat (ET) and sensible heat fluxes (Lower)

> Data from PASOH by our Kyoto Univ.

Monthly ET with P amounts in Amazonian rainforest (Ducke) and Thai hill- evergreen forest (Kog-Ma)

4400

R_-G-S(MJ m-2 year")

Shuttleworth: Proc. R. Soc. Lond., B233,1988 Tanaka et al.: J. Geophysic.Res. 108, 2003

Available energy allocates high portion to ET

Kosugi et al., J. For. Res. 17, 2012

Tropical forest

Please see our 7 year Observation on H₂O & CO₂ exchange in Pasoh In Kosugi et al., J. Forest Research 17, 2012

Monthly P and Soil water (Upper), and available energy (radiation - heat storage), latent heat (ET) and sensible heat fluxes (Lower)

Relationship of annual *ET* to annual available energy

Forest ET in tropics is constant and slightly larger in dry and sunny seasons

Boreal forest

DISCUSSION Function of forest *ET*

A high dependency of ET on the atmospheric demand with a high resistance against the dryness of soil water is revealed in forest throughout the world

This can be derived from a strong resilience of an individual tree against the severe dry stresses encountered during its long life

In a region, where precipitation comes from EVP in the sea such as islands and peninsulas, forestry with cut is rather desirable for watershed management

Sustainable operation of forestry

DISCUSSION Function of forest *ET*

Vapor from Atlantic Ocean is consumed in Europe in winter, but is recycled through the land ET to reach Far East in summer

In a region, where precipitation comes from *ET* in the land surface such as large continents, a large-scale cutting of forest may cause a reduction of P

Although the resilience of forest *ET* is a universal nature, its function is different between **islands** and **continents**

Atmospheric demand

Net radiation Vapor deficit

Penman-Mor Equation

CONCLUSION

Forest *ET* follows the atmospheric demand

Further warming may reduce *ET* by soil dryness

Soil dryness control

Function of *ET* for water is different between islands and continents

Soil moisture

Atmos. Demand

Acknowledgement

Continuous catchment observation since 1937 by FFPRI

(Forestry and Forest Products Research Institute) is highly appreciated.

Thank you