International Symposium on Southeast Asian Tropical Rain Forest Research related with Climate Change and Biodiversity

Managing Tropical Forests for Timber, Carbon, and Biodiversity Conservation

Nophea Sasaki University of Hyogo (兵庫県立大学大学院) nopsasaki@gmail.com

REDD+ and Timber

- REDD: Reducing Emissions from D & D
- "REDD+" additionally includes
 - Conservation of Carbon Stocks
 - Sustainable Management of Forests
 - Enhancement of Forest Carbon Stocks
- Safeguard Biodiversity and Local Benefits
- REDD+: Compensation scheme for reducing carbon emissions
- Timber demand will continue. Maintaining this demand is therefore important for the success of REDD+ scheme

Questions

- How can we achieve timber supply while still preserving carbon stocks?
- Are there any convincing stories about good logging practices that could be adopted?
 - Conventional Logging (CVL): unplanned, unsupervised
 - Reduced Impact Logging (RIL): Planning, training, supervising
 - How can we safeguard biodiversity and local benefits?

Reducing logging damages and wastes

Variables	Locations	CVL	RIL	Sources
1. Logging damages to residual stands as percentage of commercial stem density	Sarawak, Malaysia	54.0%	28.0%	FAO (2001) (DBH ≥10 cm)
	Sabah, Malaysia	60.0%	30.0%	Tay et al. (2002) (DBH ≥1 cm)
	East Kalimantan, Indonesia	48.4%	30.5%	Bertault & Sist (1997) (DBH ≥10 cm)
	East Kalimantan	24.7%	14.5%	Sist et al. (2003) (DBH>20 cm)
2. Logging wastes as percentage of harvested wood	Sarawak, Malaysia	20.0%	0.0%	FAO (2001)
	East Kalimantan, Indonesia	46.2%	26.2%	Sist & Saridan (1999)
	Easter Amazon	24.0%	8.0%	Holmes et al. (2002)
2. Increase Wood	I Processing	33-55%	60%?	

Adopted from Sasaki & Putz (2009)

From: Production Forests, to Logging; to Wood Products; to Housing

Illustration

Area: 403 M ha (ITTO) Aboveground C/ha: 172.5 (±16.8) (based on Putz et al. 2012, Kim-Phat et al. 2002, Okuda et al. 2004, more) Operable Area: 50-100%

We secure this

We reduce this

See Methods in Sasaki et al. (2012) *Environmental Science & Policy*

Pre-logging

RIL harvests LESS for same product, reduces damages, retain more carbon

RIL also reduces wastes (short-life carbon) for same product

Timeframe (year)

RIL could retain more carbon

RIL vs CVL Revenues (403 million ha)

Revenues and Policy Options (50-	Cutting Cycle					
year cycle with 50% operable area)	25-year	40-year	50-year			
EWP (million m3/year)	199.7	140.4	82.4			
Unit price* (\$/m3)	800.0	1040.0	1040.0			
Timber Revenues (\$ billion/year)	159.7	146.0	85.7			
Future Loss (\$billion/year)	-1.2	-0.7	-0.1			
Carbon credits (billion tCO2)	1.0	-0.7	-1.0			
Carbon Price (\$/tCO2)	0.8	8.0	8.0			
Carbon Revenues (\$ billion/year)		5.9	8.4			
Total Revenues (\$ billion/year)	158.5	151.2	94.0			
Policy options						
1. Penalty for carbon emissions (\$	-7.7	5.9	8.4			
billion/year)						
Total Revenues (\$ billion/year)	150.8	151.2	94.0			
2. Payment for ecosystem services,	0.00	146.9	146.9			
PES (\$/ha/year), 10% of Costanza et al. (1997)						
PES for 403 million ha (\$ billion/year)	0.0	59.2	59.2			
Total Revenues (\$ billion/year)	150.8	210.4	153.2			
COSTS: RIL is profitable (Holmes et al. 2002), other studies vary (Medjibe & Putz 2012)						

Biodiversity => Unplanned Tree Felling: Expensive Trees are likely to be cut (all DBH>30 cm)

Species Code & Grade	Botanical Name	Density (trees/ha)	Volume (m3/ha)	Grades	Price (US\$/m3)	IUCN-List
Luxury Grad	е	0.5	2.7	LUXURY	3,400- 11,000	Critically Endangered
СНКМ	Dispyros spp.				T T	
Grade I		18.7	45.9			
KRKO	Sindora conchinchinnensis	2.7		I	500-600	Threatened Species
DCSP	Tarrietia javanica	1.4		I	500-600	Endangered Species
SRLO	Lagerstroemia sp.	0.6		I	500-600	
KRLA	Dialium sp.	0.6		I	500-600	
Others		13.5				
Grade II		20.7	85.1	II		
CHBG	Dipterocarpus costatus	7.5		II	430-460	Threatened Species
CRMS	Vatica astrotricha	3.9		II	430-460	
PHDK	Anisoptera glabra	6.6		II	430-460	Threatened Species
SRKM	Payena elliptica	1.3		П	430-460	Any trac may
Others		1.3		II	430-460	Any tree may
Grade III		19.8	2.1	III	130-150	be cut
PHON	Callophyllum sp.	1.2		111	130-150	depending on
PRNG	Eugenia spp.	5.9		III	130-150	depending on
TLOK	Parinarium annamensis	2.9		III	130-150	who supervise
TRTM	Crypteronia sp.	1.6		III	130-150	logging
Others		8.3				logging
UNKNOWN		18.6	34.5	unkn	100.0	
TOTAL		78.4	170.3		. .	
HARVESTIN	IG (30% cut)		51.	1]	Data in Sa	ndan. Cambodia

Note: This calculation is based on the assumption that trees with DBH> 30 cm can be harvested. In practice, such DBH limits from one species to another

Expensive tree became less as unplanned logging goes on

Despite having high proportion of small trees, mature trees in Luxury Grade were almost gone: loss of expensive mature trees

RIL can additional ensure

- Socially and environmentally sensitive areas (forests on steep slopes, bufferzones around waterways and villages, and socially, culturally, environmentally important sites) are strictly prohibited from logging
- These sensitive areas are vital for safeguarding biodiversity and local benefits

Most Recent Studies about RIL

- Imai *et al.* (2009): More wildlife and carbon stocks in RIL-used forests
- Miller *et al*. (2011): RIL resulted in small decreases in gross primary production, leaf production, and latent heat flux
- Putz et al. (2012): RIL can sustain timber production, retain species, and conserve carbon stocks
- Pena-Claros *et al.* (2008), Villegas *et al.* (2009): RIL could accelerate growth
- Costs: Lower under RIL but see Medjibe & Putz (2012) for comprehensive reviews of the Costs

Way forwards ...

- Adopt RIL, develop its guidelines, and Training
- Safeguards: Develop guidelines for managing sensitive areas for biodiversity and local benefits
- Transparent enforcing mechanism
- Double measures:
 - Validated and verified timber-carbon projects
 - Certified timber production and market access
- More research on RIL Impacts on Biodiversity and Environment, and RIL Costs

THANK YOU

Acknowledgment Prof. Dr. Toshinori Okuda of Hiroshima University and NIES for their kind invitation KAKENHI (24252002) for Research Grant