Data Set Citation:
When using this data, please cite the data package:
Fukuzawa K.
Relationship between fine root dynamics and stand aboveground factors or soil environmental factors
JaLTER-Hokkaido-Kita.1146.3 (https://db.cger.nies.go.jp/JaLTER/metacat/metacat/JaLTER-Hokkaido-Kita.1146.3/jalter-en)
General Information:
Title:Relationship between fine root dynamics and stand aboveground factors or soil environmental factors
(ja) 細根動態・林分地上部因子・土壌環境因子の関係
Identifier:JaLTER-Hokkaido-Kita.1146.3
Abstract:
We measured fine root biomass (FRB) and production (FRP), stand aboveground factors, and soil environmental factors and analysed the fine root parameters and these factors in stands covered with dense understory vegetation, Sasa senanensis (hereafter, Sasa) in Teshio Experimental Forest, northern Japan. We also determined Sasa aboveground biomass and culm density for the evaluation of Sasa amount. We quantified FRB and FRP of trees and Sasa separately. Four type of stands include conifer plantation, CP; primary forest, PF; secondary forest, SF, Sasa area, SA. Stand aboveground factors include tree aboveground biomass, tree density, sum of basal area (BA), and canopy openness. Soil environmental factors include organic layer thickness, soil pH, soil ammonium and nitrate content, soil inorganic nitrogen content, soil water content, soil temperature, soil carbon content, soil nitrogen content, and soil C/N. (ja) 天塩研究林内の高密度のササが密生する林分を用いて,細根バイオマス (FRB),細根生産量 (FRP) と樹木地上部因子および土壌環境因子を測定し,細根因子とこれらの因子の関係を解析した.また,ササ地上部量評価のため,ササ地上部バイオマス,稈密度を評価した.細根バイオマスと細根生産量について樹木とササに分別して定量した.4つの林分は, 針葉樹植栽地,一次林,二次林,ササ地を含む.樹木地上部因子は,樹木地上部バイオマス,立木密度,胸高断面積合計と開空率を含む.林分地上部因子は樹木地上部バイオマス,立木密度,胸高断面積合計と開空率を含み,土壌環境因子は有機物層厚さ,土壌pH,土壌中のアンモニウム態窒素量,硝酸態窒素量,無機態窒素量,土壌水分,地温,土壌中の炭素・窒素含有率,土壌C/Nを含む.
Keywords:
  • fine root biomass
    (ja) 細根バイオマス
  • fine root production
    (ja) 細根生産量
  • biodiversity
    (ja) 種多様性
  • Sasa senanensis
    (ja) クマイザサ
  • tree aboveground biomass
    (ja) 樹木地上部バイオマス
  • soil nitrogen availabitily
    (ja) 土壌の利用可能な窒素量
Data Table, Image, and Other Data Details:
Metadata download: Ecological Metadata Language (EML) File
Data Table:Fine root biomass / 細根バイオマス ( View Metadata | Download File download)
Data Table:Fine root length / 細根根長 ( View Metadata | Download File download)
Data Table:Weight based fine root production / 重量ベースの細根生産量 ( View Metadata | Download File download)
Data Table:Length based fine root production / 根長ベースの細根生産量 ( View Metadata | Download File download)
Data Table:Stand and soil factors / 林分・土壌要因 ( View Metadata | Download File download)
Data Table:Specific Root Lentgh (SRL) / 比根長 (SRL) ( View Metadata | Download File download)
Data Table:Root Tissue Density (RTD) / 根組織密度 (RTD) ( View Metadata | Download File download)

Involved Parties

Data Set Owners:
Individual: Karibu Fukuzawa (ja) 福澤加里部
Organization:Forest Research Station, Field Science Center for Northern Biosphere, Hokkaido University
(ja) 北海道大学北方生物圏フィールド科学センター森林圏ステーション
Position:Associate Professor
(ja) 准教授
Address:
483 Otoineppu,
Otoineppu, Hokkaido 098-2501 Japan
(ja) 日本 098-2501 北海道 中川郡音威子府村
(ja)音威子府483
Phone:
+81-1656-5-3216 / 01656-5-3216 (voice)
Phone:
+81-1656-5-3218 / 01656-5-3218 (fax)
Email Address:
caribu@fsc.hokukdai.ac.jp
Web Address:
http://forest.fsc.hokudai.ac.jp/~exfor/fr/
Data Set Contacts:
Individual: Karibu Fukuzawa (ja) 福澤加里部
Organization:Forest Research Station, Field Science Center for Northern Biosphere, Hokkaido University
(ja) 北海道大学北方生物圏フィールド科学センター森林圏ステーション
Position:Associate Professor
(ja) 准教授
Address:
483 Otoineppu,
Otoineppu, Hokkaido 098-2501 Japan
(ja) 日本 098-2501 北海道 中川郡音威子府村
(ja)音威子府483
Phone:
+81-1656-5-3216 / 01656-5-3216 (voice)
Phone:
+81-1656-5-3218 / 01656-5-3218 (fax)
Email Address:
caribu@fsc.hokukdai.ac.jp
Web Address:
http://forest.fsc.hokudai.ac.jp/~exfor/fr/

Data Set Characteristics

Geographic Region:
Geographic Description:Conifer plantation (CP) / 針葉樹植栽地 (CP)
Bounding Coordinates:
West:  142.110745  degrees
East:  142.110745  degrees
North:  45.05055  degrees
South:  45.05055  degrees
Mimimum Altitude:80.0  meter
Maximum Altitude:80.0  meter
Geographic Region:
Geographic Description:Primary forest (PF) / 一次林 (PF)
Bounding Coordinates:
West:  142.11003666  degrees
East:  142.11003666  degrees
North:  45.05227833  degrees
South:  45.05227833  degrees
Mimimum Altitude:75.0  meter
Maximum Altitude:75.0  meter
Geographic Region:
Geographic Description:Secondary forest (SF) / 二次林
Bounding Coordinates:
West:  142.10377  degrees
East:  142.10377  degrees
North:  45.05430333  degrees
South:  45.05430333  degrees
Mimimum Altitude:75.0  meter
Maximum Altitude:75.0  meter
Geographic Region:
Geographic Description:Sasa area (SA) / ササ地 (SA)
Bounding Coordinates:
West:  142.11093666  degrees
East:  142.11093666  degrees
North:  45.05241333  degrees
South:  45.05241333  degrees
Mimimum Altitude:75.0  meter
Maximum Altitude:75.0  meter
Time Period:
Begin:
2013-08-26
End:
2014-09-16
Taxonomic Range:
Classification:
Rank Name:Genus
Rank Value:Sasa
Common Name:ササ
Classification:
Rank Name:Species
Rank Value:senanensis
Common Name:クマイザサ
Classification:
Rank Name:Genus
Rank Value:Abies
Common Name:モミ
Classification:
Rank Name:Species
Rank Value:sachalinensis
Common Name:トドマツ
Classification:
Rank Name:Genus
Rank Value:Quercus
Common Name:コナラ
Classification:
Rank Name:Species
Rank Value:crispula
Common Name:ミズナラ
Classification:
Rank Name:Genus
Rank Value:Magnolia
Common Name:モクレン
Classification:
Rank Name:Species
Rank Value:obovata
Common Name:ホウノキ
Classification:
Rank Name:Genus
Rank Value:Alnus
Common Name:ハンノキ
Classification:
Rank Name:Species
Rank Value:hirsuta
Common Name:ケヤマハンノキ
Classification:
Rank Name:Genus
Rank Value:Acer
Common Name:カエデ
Classification:
Rank Name:Species
Rank Value:pictum
Common Name:イタヤカエデ
Classification:
Rank Name:Genus
Rank Value:Phellodendron
Common Name:キハダ
Classification:
Rank Name:Species
Rank Value:amurense
Common Name:キハダ
Classification:
Rank Name:Genus
Rank Value:Sorbus
Common Name:ナナカマド
Classification:
Rank Name:Species
Rank Value:commixta
Common Name:ナナカマド
Classification:
Rank Name:Genus
Rank Value:Betula
Common Name:カバノキ
Classification:
Rank Name:Species
Rank Value:ermanii
Common Name:ダケカンバ
Classification:
Rank Name:Genus
Rank Value:Prunus
Common Name:サクラ
Classification:
Rank Name:Species
Rank Value:ssiori
Common Name:シウリザクラ
Classification:
Rank Name:Genus
Rank Value:Betula
Common Name:カバノキ
Classification:
Rank Name:Species
Rank Value:platyphylla
Common Name:シラカンバ
Classification:
Rank Name:Genus
Rank Value:Hydrangea
Common Name:アジサイ
Classification:
Rank Name:Species
Rank Value:paniculata
Common Name:ノリウツギ

Sampling, Processing and Quality Control Methods

Step by Step Procedures
Step 1:
Description:

Study site / 調査地

We established study plots in four stands in the Teshio Experimental Forest, Hokkaido University in northern Hokkaido, Japan. The selected representative stands were (1) conifer plantation (CP) of mature Abies sachalinensis, (2) primary forest stand (PF) dominated by Quercus crispula and composed of multiple broadleaved and conifer species, which experienced small-scale logging because of wind-fallen trees in 1975 and slight selective cutting in 2001, (3) secondary forest stand (SF) dominated by 69-year-old Betula platyphylla, naturally created following a forest fire in 1945, and (4) Sasa area (SA) completely dominated by S. senanensis except for scarce young trees, which experienced clear-cutting of a natural forest in 2003. The mean annual air temperature was 5.7 °C and the total annual precipitation was 1,190 mm at the meteorological station ca. 16 km south-west of the site (Teshio Experimental Forest); 30% of total annual precipitation fell as snow during November to April (Takagi et al. 2009). The bedrock is Cretaceous sedimentary rock and the dominant soil is a Gleyic Cambisol (FAO, 1990). In each stand, we selected five individual target trees randomly and established a plot (ca. 5 × 5 m) with a centre 2 m away from each target tree. The target tree species were A. sachalinensis in CP, Q. crispula in PF, and B. platyphylla in SF. In the Sasa stand, we randomly selected five plots in the Sasa vegetation community (ca. 1.5–1.7 m height).
(ja) 北海道北部に位置する北海道大学天塩研究林内の4つの林分に調査地を設定した.林分は,(1) 39年生針葉樹植栽地 (CP),(2) 一次林 (PF)and (PF):ミズナラや他の広葉樹と針葉樹によって構成される.1975年に風倒処理のための伐採,2001年に弱度の択伐を実施,(3) 二次林 (SF):69年生のシラカンバが優占,1945年の山火事後に成立,(4) ササ地 (SA):若齢の樹木を除きクマイザサが完全に優占,以前は針広混交林だったが,2003年に皆伐を経験. 各林分に置いて5つの対象木をランダムに選び、その周囲に対象木から2m地点を中心とするプロット (約 5 × 5 m) を設定した.対象樹種は,トドマツ (CP),ミズナラ (PF),シラカンバ (SF) とした.SAではクマイザサ群落 (稈高約1.5–1.7 m) 内で5地点をランダムに選んだ.

Step 2:
Description:

Fine root biomass (FRB), production (FRP) and turnover / 細根バイオマス (FRB) と生産量 (FRP) とターンオーバー

To measure FRB, we collected the Oe/Oa layer and the 0–10 cm surface soil by auger (inner diameter: 4.4 cm) at the center of each plot in 2013 (August and November) and 2014 (May and July). To measure FRP, we used in situ ingrowth cores (diameter: 4.4 cm, depth: 10 cm, 152 cm3, lateral face: 4 mm polyethylene mesh). We sieved soil through a 4-mm mesh to remove roots, used it to fill the ingrowth cores and installed them 10 cm deep in the mineral soil. To measure FRP in the Oe/Oa layer, we put humus-filled ingrowth cores on the installed soil-filled ingrowth cores. We established the ingrowth cores in both the Oe/Oa and soil layers in August 2013, May and July 2014 for 2 months and in November 2013 for 6 months to identify seasonal trends. To calculate annual FRP, we summed the FRP of each observation interval. We calculated fine root turnover (yr−1) from FRP (g m−2 yr−1) and FRB (g m−2) according to the following equation (Dahlman and Kucera 1965; Gill and Jackson 2000): Fine root turnover = Annual FRP/annual mean FRB (2) Annual mean FRB was the temporal mean value calculated from the four times collection. For both FRB and FRP, we separated roots from soil by washing. We sieved soil through a 2-mm mesh and additionally used a 0.5-mm sieve attached below as a backup. We distinguished Sasa roots from tree roots by their light colour and branching style. We selected roots <2 mm in diameter. We captured the images of the roots from each plot spread in a water-filled transparent acrylic box and measured total root length and root volume with a WinRHIZO root image analysis system. After imaging, we dried the roots (70 °C, 48 h) and weighed them. We calculated SRL (m g−1) and RTD (g cm−3) from the length, volume, and weight of roots in each plot.
(ja) 細根バイオマスを測定するため,2013年8月と11月および2014年5月と7月に各プロットの中心にてオーガー (内径4.4 ㎝) を用いてOe/Oa層と表層土壌 (0-10 cm) を採取した. 細根生産量を測定するため,イングロスコア (内径4.4 ㎝,深さ10 ㎝,体積152 cm3, 側面4mポリエチレンメッシュ)を用いた.あらかじめ表層10 ㎝土壌を採取し,4 mmの篩にかけて根を除去した.その根を含まない土壌をイングロスコ充填し,オーガーであけた表層10㎝の穴に埋設した.Oe/Oa層の細根生産量を測定するために,腐植を充填したイングロスコアを土壌を充填し埋設したイングロスコアの上に置いた.イングロスコアは2013年8月・2014年5月と7月および2013年11月に設置し,それぞれ2か月後と6か月後に回収した.年間の細根生産量は,各期間の細根生産量を合計することにより算出した. 細根ターンオーバーは以下の式により算出した (Dahlman and Kucera 1965; Gill and Jackson 2000):  細根ターンオーバー = 年間のFRP/年間の平均FRB ここで,年間の平均FRBは4回のサンプリングの平均とした. 細根バイオマスおよび細根生産量の評価においては,根を洗浄して土壌と分離した.根洗浄時には2 ㎜篩とバックアップとして0.5 ㎜篩を用いた.ササ根と樹木根を色や分岐様式から分別した.直径2 mm未満の根を解析した. 根長および根体積は,水を張った透明のアクリル箱に各プロットの各種の根を並べ,根画像解析システム (WinRHIZO) を用いてスキャンしたのちに画像解析により測定した.画像取得後に根を乾燥 (70 °C, 48 時間) ・重量測定した.比根長 (SRL: m g−1) と根組織密度 (RTD: g cm−3) を根長・根体積と根重量から計算した.

Instrument(s): WinRHIZO root image analysis system (REG 2009, Regent Instruments Inc., Quebec, Canada) attached to a scanner (V700 Photo, Epson, Suwa, Japan). / WinRHIZO根画像解析システム(REG 2009, Regent Instruments Inc., ケベック, カナダ) およびスキャナー (V700 Photo, エプソン, 諏訪市).
Step 3:
Description:

Stand structure and aboveground biomass / 林分構造と地上部バイオマス

We determined the overstory tree density and tree aboveground biomass in each plot in April 2014. We conducted aboveground tree surveys within circles (10-m radius) around each target tree. We counted the trees to obtain tree density (trees ha−1) and measured the diameter at breast height (1.3 m, DBH) of all individual trees in each plot. Then we calculated BA (m2 ha−1) as the sum of the basal areas at breast height of individual trees. To estimate tree aboveground biomass, we used the following allometric equation (Takagi et al. 2010). lnY=alnX + b where X is DBH (cm), Y is aboveground biomass (kg), and a and b are constants (a = 2.428, b = −2.282). To evaluate the aboveground biomass of Sasa, we harvested its aboveground parts including culms and leaves in 50 cm × 50 cm quadrats in each plot in September 2014 after current-year leaves had completely expanded. We dried the culms and leaves separately (70 °C, 48 h) and weighed them.
(ja) 各プロットにおいて立木密度と樹木地上部バイオマスを2014年4月に測定した.対象木から半径10m範囲内の全樹木について測定した.プロット内の樹木個体数を計測し,胸高直径 (高さ1.3m, DBH)を測定した.それから胸高断面積合計BA (m2 ha−1) を計算した.樹木の地上部バイオマスを評価するために,以下のアロメトリー式を用いた (Takagi et al. 2010). lnY=alnX + b ここで,X はDBH (cm),Yは地上部バイオマス (kg), aとbは定数 (a = 2.428, b = −2.282) である. ササの地上部バイオマスを評価するために,各プロット内に50㎝× 50 cm のコドラートを設け,葉の展開が完了した2014年9月に稈と葉を含むササの地上部を刈り取り定量した.サンプルは乾燥後に (70 °C, 48 時間) 重量を測定した.

Step 4:
Description:

Aboveground and soil environment / 地上部および土壌環境

We determined canopy openness, an indicator of light availability for the understory layer, in the centre of each plot where, at 1.5 m above the ground, we captured photos in zenith direction using a camera with a fish-eye lens in 2013 (September and November) and in 2014 (May and July) and used the CanopOn2 software. We measured soil temperature at 5-cm soil depth at the randomly selected two plots at 1-h intervals from November 2013 to September 2014 using a thermometer with a data logger. We measured the mean soil volumetric water content of surface 15 cm soil depth using a time-domain reflectometer (TRIME-FM, IMKO GmbH Inc., Ettlingen, Germany) in September and November 2013. We measured soil gravimetric water content in collected soil (see below for the sampling method) by weighing soil before and after oven-drying (105 °C, 24 h) in September 2014. We also measured the thickness of the Oe/Oa layer at the points of soil environmental measurements in 2013 (August and November) and in 2014 (May and July).
(ja) 林床の光利用可能性の指標となる開空度を各プロットの中心の高さ1.5 m位置にて測定した.魚眼レンズ付きのカメラを用いて天頂方向の写真を2013年9月と11月,2014年5月と7月に撮影した.CanopOn2ソフトウェア (URL: http://takenaka-akio.org/etc/canopon2/) を用いて開空率を計算した. 地温を各林分にてランダムに選定したプロットにおいて深さ5 ㎝深にて2013年11月から2014年9月まで1時間間隔で連続観測した. 表層15 ㎝の平均土壌体積水分率を時間領域反射率計を用いて2013年9月と11月に測定した.2014年9月に土壌重量水分率を乾燥 (105 °C, 24時間) 前後の重量を測定することにより算出した. Oe/Oa層の厚さを2013年8月と11月,2014年5月と7月に各プロットの土壌環境測定地点にて測定した.

Instrument(s): Camera (Coolpix 4500, Olympus Corp., Tokyo, Japan) CanopOn2 software (URL: http://takenaka-akio.org/etc/canopon2/) Thermometer with a data logger (UA-001-64, Onset Computer Corp., Bourne, MA, USA) Time-domain reflectometer (TRIME-FM, IMKO GmbH Inc., Ettlingen, Germany) / カメラ (Coolpix 4500, オリンパス株式会社, 東京都) CanopOn2ソフトウェア (URL: http://takenaka-akio.org/etc/canopon2/) データロガー付き温度計 (UA-001-64, Onset Computer Corp., Bourne, MA, 米国) 時間領域反射率計 (TRIME-FM, IMKO GmbH Inc., Ettlingen, ドイツ)
Step 5:
Description:

Soil chemical properties / 土壌化学性

We determined soil C and N content, N availability, and soil environmental factors in the centre of each plot. We collected cores of the 0–10 cm surface soil layer in September 2014 using an auger and removed gravel, roots, and coarse organic debris by sieving through a 2-mm mesh. To evaluate soil N availability, we extracted soil with KCl (fresh soil:2N KCl = 1:10, w/v; shaking for 1 h) and filtered the suspension. We measured nitrate and ammonium concentrations in the extract colorimetrically using a flow-injection N analyser, calculated their contents per weight of dry soil, and added them to obtain inorganic N content. We extracted soil with water (dry soil:deionized water = 1:2.5, shaking for 1 h) and determined the pH of the suspension with a glass electrode (MM-60, TOA-DKK Inc., Tokyo, Japan). We ground oven-dried soil with an automated mortar (AMM-140D, Nitto Kagaku Co., Ltd., Nagoya, Japan) and analysed C and N contents with a CHNS/O analyser (PE2400II, Perkin Elmer Inc., Waltham, MA, USA).
(ja) 土壌の炭素および窒素含有率,土壌の利用可能な窒素量,各種土壌環境を測定した.2014年9月にてオーガーを用いて土壌 (0-10 cm)を採取し,2 ㎜の篩を用いてレキや根,粗大有機物を除去した.土壌の利用可能な窒素量を評価するために,KClにおる土壌抽出を行い (新鮮土壌:2N KCl = 1:10, w/v; 1時間振とう),ろ過した. ろ液中の硝酸態窒素およびアンモニウム態窒素濃度をフローインジェクション窒素測定装置を用いて比色定量により測定した.乾燥土壌重量あたりの窒素量として評価し,無機窒素量はそれらを合計することにより算出した. 土壌pH測定のため,土壌抽出 (乾燥土壌:イオン交換水 = 1:2.5, 1時間振とう) を行い,ガラス電極法により懸濁液のpHを測定した. 自動乳鉢を用いて乾燥土壌を粉砕した.土壌の炭素および窒素含有率をCHNS/Oアナライザーを用いて分析した.analysed C and N contents with a CHNS/O analyser (PE2400II, Perkin Elmer Inc., Waltham, MA, USA).

Instrument(s): Filter (No. 5C, Advantec Inc., Tokyo, Japan) Flow-injection N analyser (AACS-4, BL-TEC Inc., Osaka, Japan) Glass electrode pH meter (MM-60, TOA-DKK Inc., Tokyo, Japan) Automated mortar (AMM-140D, Nitto Kagaku Co., Ltd., Nagoya, Japan) CHNS/O analyser (PE2400II, Perkin Elmer Inc., Waltham, MA, USA) / 濾紙 (No. 5C, アドバンテック東洋株式会社, 東京) フローインジェクション窒素測定装置 (AACS-4, ビーエルテック株式会社, 大阪市) ガラス電極pHメーター (MM-60, 東亜ディーケーケー株式会社, 東京都) 自動乳鉢 (AMM-140D, 日陶科学株式会社, 名古屋市) CHNS/Oアナライザー (PE2400II, Perkin Elmer Inc., Waltham, MA, 米国)

Data Set Usage Rights

Follows to Data Policy of JaLTER Network.
(ja) JaLTERネットワークのデータポリシーに従う。
Access Control:
Auth System:JaLTER
Order:allowFirst
Allow: [read] public
Additional Metadata
Metadata download: Ecological Metadata Language (EML) File