全国酸性雨調査（111）－乾性沈着（アンモニア濃度のパッシブ法と FP 法比較）－

○山口 高志（北海道立総合研究機構 エネルギー・環境•地質研究所），菊地 優也（福島県環境創造センター），村野 健太郎（京都大学），徳地 直子（京都大学），箕浦 宏明（アジア大気汚染研究センター）［全国環境研協議会 酸性雨広域大気汚染調査研究部会］

【概要】大気中のアンモニアガス $\left(\mathrm{NH}_{3}\right)$ 濃度測定法としてフィルターパック法（FP）と小川式パッ シブサンプラー法（PS）が用いられているが測定濃度にずれが見られる。これはそれぞれの手法 で測定精度に影響する因子（アーティファクト） があるためで，FP では $\mathrm{NH}_{4} \mathrm{NO}_{3}$ などアンモニウ ム塩 $\left(\mathrm{NH}_{4}{ }^{+}\right)$の解離， PS では $\mathrm{NH}_{4}{ }^{+}$の付着である 1）。当部会は NH_{3} のより正確な測定法開発を目的 としており，両法の比較結果を報告する。

【調査方法】

2017 と 2018 年度調査結果から欠測が多い，も しくは特異的な地点を省いて濃度比などを検討 した。比の単位は meq／meq である。

【結果】

－ NH_{3} 濃度比（PS／FP）：表 1 に FP に対する PS の NH_{3}濃度比を示す。地点は上から年平均 NH_{3} 濃度の高 い順である。PS／FPは 0．6－8．6とばらつくが，中央値は3－9月に 1.0 未満，10－2 月に 1.0 以上と なる傾向があった。
$\mathrm{NH}_{4}{ }^{+}$の解離は気温が高いほど大き い一方， $\mathrm{NH}_{4}{ }^{+}$濃度は冬季に高い傾向で ある ${ }^{2)}$ 。これらのことから PS／FP の傾向は3－9月は $\mathrm{NH}_{4}{ }^{+}$解離による FP の過大評価，10－2月は $\mathrm{NH}_{4}{ }^{+}$付着による PS の過大評価を示すと考えられる。この ことから夏季には PS が，冬季には FP がより正確な濃度を測定できると考え られる。一方，母子里，豊橋，射水，札幌では（PS／FP）が 2 を超える期間が 12－2 月に多く見られた。

表2 FPによる $\mathrm{nssSO}_{4}{ }^{2-} / \mathrm{NH}_{3}$ と $12-2$ 月平均 NH_{3} 濃度 $\left(\mathrm{nmol} / \mathrm{m}^{3}\right)$ および平均気温 ＊気温は地点名横括弧内。比の値が大きいほど網がけが濃い。

2018（気温）	04 月05月06月07月08月09月10月11月12月01月02月03月 $\mathbf{N H}_{3}^{12-2 \text { 月平垉度 }}$												
佐倉（4．5）	0.65	0.61	0.39	0.50	0.38	0.35	0.28	0.34	0.32	0.33	0.57	0.51	124.8
市原（5．1）	0.64	0.64	0.40	0.61	0.50	0.39	0.33	0.33	0.27	0.37	0.46	0.43	165.4
加須（4．4）	0.41	0.48	0.38	0.51	0.25	0.29	0.26	0.20	0.1	0.26	0.38	0.37	164.3
豊橋（6．5）	0.59	0.42	0.3	0.36	0.27	0.31	0.28	0.18	0.40	0.60	0.66	0.51	79
射水（3．8）	1.08	0.72	0.51	0.87	0.29	0.34	0.46	0.71	0.78	1.17	1.31	0.95	39.3
札幌（－2．5）	0.66	0.69	0.62	0.67	0.39	0.35	0.33	0.46	1.39	1.80	1.54	1.32	27.0
母子里（－8．5）	1.90	1.60	0.99	0.76	0.87	0.67	0.82	1.43	2.51	2.59	2.47	3.22	11.5

子の影響を検討するため2018年度の NH_{3} と非海塩硫酸粒子の濃度比 $\left(\mathrm{nssSO}_{4}{ }^{2-} / \mathrm{NH}_{3}\right)$ と $12-2$ 月平均 NH_{3} 濃度（ FP ） と平均気温を検討した（表 2）。母子里，射水，札幌の $\mathrm{nsSSO}_{4}{ }^{2-} / \mathrm{NH}_{3}$ は $1-3$ と大きかった。これら地点では冬季 は低温や積雪により NH_{3} 濃度が $12-39 \mathrm{nmol} / \mathrm{m}^{3}$ と低いこと合わせて $\mathrm{NH}_{4}{ }^{+}$を含む $\mathrm{nssSO}_{4}{ }^{2-}$ 粒子濃度が冬季に高い ため，PS の過大評価の度合いが大きくなったと考えられた。

［考察】

NH_{3} 濃度が $\mathrm{NH}_{4}{ }^{+}$に対して十分に大きい地点では FP の検証や補正に PS は有効だが，逆の場合にはPS の過大評価があり，特に NH_{3} 濃度が低い場合にはその度合いが大きくなることが明らかとなった。PSを用いる場合には測定地点の NH_{3} と $\mathrm{NH}_{4}+$ 濃度を考慮すべきだろう。 PS の精度向上方法として $\mathrm{NH}_{4}{ }^{+}$のカウンターイオ ン（ $\mathrm{SO}_{4}{ }^{2-}, ~ \mathrm{NO}_{3}{ }^{-}$など）を測定し， $\mathrm{NH}_{4}{ }^{+}$付着量の補正も考えられるが，操作は煩雑になる。

今回用いたデータ内で年によって大きく傾向の異なる地点が見られ， $\mathrm{NH}_{4}{ }^{+}$解離と付着だけでは説明できな い誤差もあると考えられる。今後より多くのデータで検討を行う。
1）高橋希望，松田和秀．東京農工大学，2018
2）全国環境研協議会 酸性雨広域大気汚染調査研究部会．全国環境研会誌 44，no． 3 （2019 年）：74－115．

