Appendix. Detail information of each plot.

This material gives detail information of each plot: forest age, disturbance history, soil type, soil pH, bedrock, snow depth, dwarf bamboo as understory vegetation, maximum canopy height, layout of the plot and subplots, remarks (optional) and acknowledgements (optional). This material includes information which was described in Appendix of Ishihara et al. (2011) and Suzuki et al. (2012). For definition of forest age classifications, see 8.A and Ishihara et al. (2011). Forest age or maximum tree age is the age in 2010 unless specified. Soil types based on the soil classification system of the Food and Agriculture Organization of the United Nations (FAO) (Dudal 1968), were extracted from the 1:200,000 scale soil map of the Land Classification Survey conducted by the Ministry of Land, Infrastructure, Transport and Tourism, Japan

(http://nrb-www.mlit.go.jp/kokjo/inspect/landclassification/download/index.html). In addition, Soil types based on the Classification of Forest Soil in Japan (Forest Soil Division 1976) were also shown, which are according to related literatures and personal observations of researchers. Layout of subplots shown below is that in the latest census year for each plot. 'NA' means data not available. References with * are those conducted in the plot.

UR-BC1

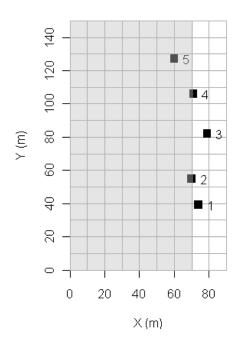
Forest age: OG.

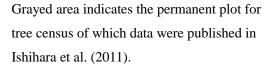
Disturbance: No record of human disturbance (Yoshida T. personal communication).

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Brown forest soil (Shibata et al. 2002).

Soil pH: 3.9-4.5 (Ozawa et al. 2001).


Bedrock: Andesite tuff-breccia (Shibata et al. 2002).


Snow depth: 2 m (Shibata et al. 2002).

Dwarf bamboo as understory vegetation: Understory is covered by dwarf bamboo (Yoshida T. personal observation).

Maximum canopy height: 28 m (Yoshida T. unpublished data).

Plot & Subplots: The shape of plot is 70×150 m. The direction of Y-axis is 71° west from true north.

Remarks: Croplands are 600 m northwest and 300 m southwest of the plot.

Acknowledgements: We thank the staff of Uryu Experimental Forests of Hokkaido University for the field work.

AS-DB1

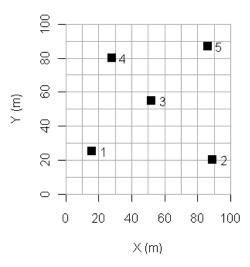
Forest age: OG. The forest is estimated to be more than 200 years old (Tashiro N. personal communication).

Disturbance: No evidence of human disturbance (Tashiro N. personal observation).

Soil type FAO: Humic Cambisols. Cambisols, according to the personal observation of Shibata H.

Soil type Forest Soil Division: Black soil (Shibata H. personal observation).

```
Soil pH: NA.
```


Bedrock: Tuff layer, sandstone, shale (Ashoro Research Forest, Kyushu University unpublished data).

Snow depth: 0.7 m (Tashiro N. personal observation).

Dwarf bamboo as understory vegetation: Understory is dominated by 0.4–0.7 m high *Sasa nippinica* (Tashiro N. personal observation).

Maximum canopy height: 25 m (Tashiro N. personal observation).

Plot & Subplots: The direction of Y-axis is 7° west from true north.

Remarks: Grasslands are 500 m northwest of the plot.

AS-DB2

Forest age: S. The forest is estimated to be about 80 years old (Tashiro N. personal observation).

Disturbance: The forest is a secondary forest regenerated naturally after clear cutting (Tashiro N. personal observation).

Soil type FAO: (Entic) Andosols. Cambisols, according to the personal observation of Shibata H. *Soil type Forest Soil Division*: Black soil (Shibata H. personal observation).

Bedrock: Tuff layer, sandstone, shale (Ashoro Research Forest, Kyushu University unpublished data).

Snow depth: 0.7 m (Tashiro N. personal observation).

Dwarf bamboo as understory vegetation: Understory is dominated by 0.4–0.7 m high *Sasa nippinica* (Tashiro N. personal observation).

Maximum canopy height: 25 m (Tashiro N. personal observation).

Plot & Subplots: NA.

TM-DB1

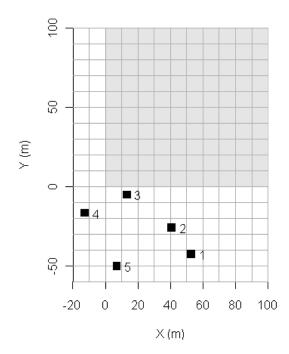
Forest age: OG. About 270-340 years old (Igarashi 1987).

Disturbance: The forest regenerated after the volcanic eruption of Mt. Tarumae in 1669 and 1739 (Igarashi 1987). The forest was disturbed by strong typhoons in 1954 (Mishima et al. 1958) and 2004.

Soil type FAO: (Andic) Rhegosols.

Soil type Forest Soil Division: Shallow top soil (Hiura et al. 1998*).

Soil pH: 5.3-6.2 (Shibata et al. 1998).


Bedrock: Volcanic ejecta of 1-2 m depth (Igarashi 1987).

Snow depth: 0.5 m (Hiura et al. 1998*).

Dwarf bamboo as understory vegetation: Understory vegetation is partly dominated by *Sasamorpha borealis* (Hiura et al. 1998*).

Maximum canopy height: 26.5 m (Ishihara M. personal observation).

Plot & Subplots: The 1-ha plot is a part of a 9-ha permanent plot. The direction of Y-axis is 31° west from true north.

Grayed area indicates the permanent plot for tree census of which data were published in Ishihara et al. (2011).

Acknowledgements: We thank the staff of Tomakomai Experimental Forests of Hokkaido University for the field work.

TM-DB2

Forest age: S.

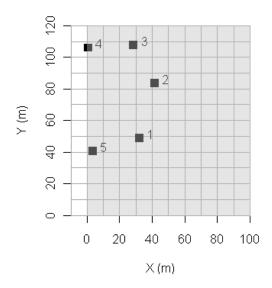
Disturbance: The forest was recorded as a dense broadleaf stand in 1948. It was disturbed by strong

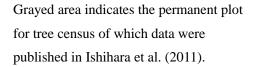
typhoons in 1954 (Mishima et al. 1958) and 2004. Three artificial gaps were created in 2002.

Soil type FAO: (Andic) Rhegosols.

Soil type Forest Soil Division: Shallow top soil (Hiura et al. 1998*).

Soil pH: 5.3–6.2 (Shibata et al. 1998).


Bedrock: Volcanic ejecta of 1-2 m depth (Igarashi 1987).


Snow depth: 0.5 m (Hiura et al. 1998).

Dwarf bamboo as understory vegetation: Half of the plot is dominated by *Sasamorpha borealis* (Ishihara M. personal observation).

Maximum canopy height: 20 m (Ishihara M. personal observation).

Plot & Subplots: The shape of plot is 100×120 m.

Remarks: Grasslands (clear-cut stands) are 200 m northwest and 400 m east of the plot.

Acknowledgements: We thank the staff of Tomakomai Experimental Forests of Hokkaido University for the field work.

TM-DB3

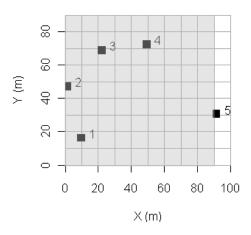
Forest age: S.

Disturbance: The forest was used as a coppice forest until about 1945.

Soil type FAO: (Andic) Rhegosols.

Soil type Forest Soil Division: Shallow top soil (Hiura et al. 1998*).

Soil pH: 5.3-6.2 (Shibata et al. 1998).


Bedrock: Volcanic ejecta of 1–2 m depth (Igarashi 1987).

Snow depth: 0.5 m (Hiura et al. 1998).

Dwarf bamboo as understory vegetation: The understory is scarcely covered by 30–50 cm high *Sasa nipponica* (Suzuki S. N. personal observation).

Maximum canopy height: 13 m (Suzuki S. N. personal observation).

Plot & Subplots: The shape of plot is 90×90 m.

Grayed area indicates the permanent plot for tree census of which data were published in Ishihara et al. (2011).

Remarks: An expressway and urban area are 100 m and 350 m south of the plot, respectively. *Acknowledgements*: We thank the staff of Tomakomai Experimental Forests of Hokkaido University for the field work.

TM-DB4

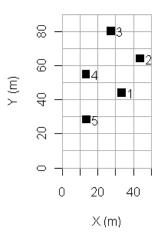
Forest age: S. 28 years old.

Disturbance: The forest regenerated naturally after the clear cutting of a *Larix kaempferi* artificial stand which was damaged by a typhoon in 1981. Vegetation and soil surface were removed after the clear cutting.

Soil type FAO: (Andic) Rhegosols.

Soil type Forest Soil Division: Shallow top soil (Hiura et al. 1998*).

Soil pH: 5.3-6.2 (Shibata et al. 1998).


Bedrock: Volcanic ejecta of 1-2 m depth (Igarashi 1987).

Snow depth: 0.5 m (Hiura et al. 1998).

Dwarf bamboo as understory vegetation: None.

Maximum canopy height: 13 m (Ishihara M. personal observation).

Plot & Subplots: The shape of plot is 50×90 m.

Remarks: Grasslands (clear-cut stands) are 150 m northwest and 300 m southeast of the plot. *Acknowledgements*: We thank the staff of Tomakomai Experimental Forests of Hokkaido University for the field work.

TM-AT1

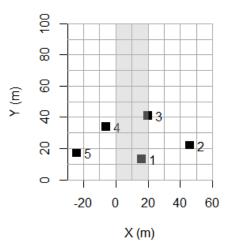
Forest age: P. 68 years old.

Disturbance: The forest was artificially regenerated in 1942 after the clear cutting of a deciduous broadleaf stand in 1940.

Soil type FAO: (Andic) Rhegosols.

Soil type Forest Soil Division: Shallow top soil (Hiura et al. 1998*).

Soil pH: 5.3-6.2 (Shibata et al. 1998).


Bedrock: Volcanic ejecta of 1-2 m depth (Igarashi 1987).

Snow depth: 0.5 m (Hiura et al. 1998).

Dwarf bamboo as understory vegetation: None.

Maximum canopy height: 20 m (Ishihara M. personal observation).

Plot & Subplots: The shape of plot is 20×100 m.

Grayed area indicates the permanent plot for tree census.

Remarks: The plot was established in a uniform artificial forest of *Picea glehnii* planted in 1942. *Acknowledgements*: We thank the staff of Tomakomai Experimental Forests of Hokkaido University for the field work.

TM-AT2

Forest age: P. 58 years old.

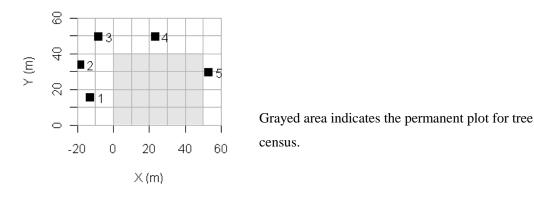
Disturbance: The forest was artificially regenerated in 1952 after the clear cutting of a Larix

kaempferi stand in 1944.

Soil type FAO: (Andic) Rhegosols.

Soil type Forest Soil Division: Shallow top soil (Hiura et al. 1998*).

Soil pH: 5.3-6.2 (Shibata et al. 1998).


Bedrock: Volcanic ejecta of 1-2 m depth (Igarashi 1987).

Snow depth: 0.5 m (Hiura et al. 1998).

Dwarf bamboo as understory vegetation: None.

Maximum canopy height: 16 m (Ishihara M. personal observation).

Plot & Subplots: The shape of plot is 50×40 m.

Remarks: The plot was established in a uniform artificial forest of *Larix kaempferi* planted in 1952. A water treatment plant and a road are 300 m east and 300 m southwest of the plot, respectively. *Acknowledgements*: We thank the staff of Tomakomai Experimental Forests of Hokkaido University

for the field work.

TM-AT3

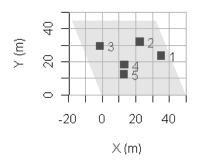
Forest age: P. 45 years old.

Disturbance: The forest was artificially regenerated in 1965 after the clear cutting of a deciduous broadleaf stand in 1964.

Soil type FAO: (Andic) Rhegosols.

Soil type Forest Soil Division: Shallow top soil (Hiura et al. 1998*).

Soil pH: 5.3-6.2 (Shibata et al. 1998).


Bedrock: Volcanic ejecta of 1-2 m depth (Igarashi 1987).

Snow depth: 0.5 m (Hiura et al. 1998).

Dwarf bamboo as understory vegetation: None.

Maximum canopy height: 20 m (Ishihara M. personal observation).

Plot & Subplots: The shape of plot is 50×45 m.

Grayed area indicates the permanent plot for tree census.

Remarks: The plot was established in 2004 in a uniform artificial forest of Abies sachalinensis

planted in 1966, and then moved to a similar stand planted in 1965 about 500 m away after the census in 2004 because the original plot had severely disturbed by a typhoon in the autumn of 2004. A grassland (clear-cut stand) is 150 m northeast of the plot.

Acknowledgements: We thank the staff of Tomakomai Experimental Forests of Hokkaido University for the field work.

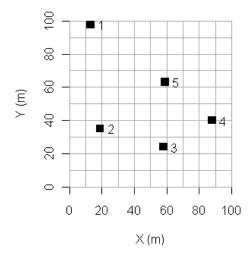
KM-DB1

Forest age: OG. Maximum tree age is about 1000 years old according to Suzuki et al. (2002*).

Disturbance: Canopy gaps and more infrequent, debris flows. No sign of human disturbance although selective cuttings were conducted at surrounding forests until 20–30 years ago (Masaki et al. 1999*; Suzuki et al. 2002*).

Soil type FAO: Residual Regosols.

Soil type Forest Soil Division: Gravel (large and sandy), brown forest soil (Masaki et al. 1999*). *Soil pH*: NA.


Bedrock: Igneous rock (green tuff and others).

Snow depth: 1.8 m (Suzuki et al. 2002*).

Dwarf bamboo as understory vegetation: S. kurilensis and S. palmata are distributed widely but dominant only patchily. Instead, evergreen shrub (*Camellia japonica* var. *decumbens*), tall herbs (e.g. genera *Laportea*, *Elatostema and Petasites*) and ferns (genera *Polystichum*, *Dyropteris* and *Arachniodes*) dominate the understory layer (Hoshizaki et al. 1997*).

Maximum canopy height: 30 m (Suzuki et al. 2002*).

Plot & Subplots: The 1-ha plot is a part of a 4.71-ha permanent plot. The direction of Y-axis is 11° east from true north.

- *Remarks*: A stream flows in the plot. A road is 50 m east and 100 m northwest of the plot. Rivers are 250 m southeast and 400 m southwest of the plot. Data of beetle, organic layer and mineral soil in the latest 3 years are not available in this dataset.
- Acknowledgements: We thank Wajirou Suzuki, Katsuhiro Osumi and Kazunori Takahashi for early setup of the plot.

KM-DB2

Forest age: OG.

Disturbance: NA.

Soil type FAO: Residual Regosols.

Soil type Forest Soil Division: Gravel (large and sandy), brown forest soil (Masaki et al. 1999*).

Soil pH: NA.

Bedrock: Igneous rock (green tuff and others).

Snow depth: NA.

Dwarf bamboo as understory vegetation: NA.

Maximum canopy height: NA.

Plot & Subplots: NA.

Remarks: The plot was established in a deciduous broadleaf forest dominated by *Fagus crenata* on a terrace adjacent to KM-DB1. A stream flows nearby the plot. A road is 100 m northeast and 150 m northwest of the plot. Rivers are 200 m southeast and 250 m south of the plot.

Acknowledgements: We thank Wajirou Suzuki, Katsuhiro Osumi and Kazunori Takahashi for early setup of the plot.

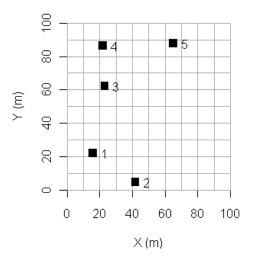
AO-BC1

Forest age: OG.

Disturbance: Human usage of the forest has been restricted for the past 400 years (Suzuki Mitsuo personal communication).

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Brown forest soil (Scale 1:50,000 Fundamental Land Classification Survey in Miyagi, Sendai, 1976).


Soil pH: NA.

Bedrock: Aobayama formation on tuff (http://www.biology.tohoku.ac.jp/garden/geology.htm). *Snow depth*: 0.1 m.

Dwarf bamboo as understory vegetation: Patchy distribution of Sasa borealis (Kobayashi K.

personal observation).

Maximum canopy height: 20 m (Kobayashi K. personal observation). Plot & Subplots: The direction of Y-axis is 18° west from true north.

Remarks: Grasslands and urban areas are 150 m north and southeast of the plot.

OS-EC1

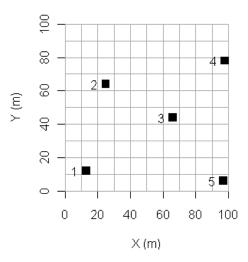
Forest age: OG. About 500 years old (Homma K. personal communication).

Disturbance: NA.

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Dry podzolic soil, Wet iron podzolic soil (Nakata 1994).

Soil pH: 4.0–4.9 (Nakata 1994).


Bedrock: Andesite (Nakata 1994).

Snow depth: 3.5-3.9 m (Nakata 1994).

Dwarf bamboo as understory vegetation: None (Homma K. personal observation).

Maximum canopy height: About 15-20 m (Nakata 1994).

Plot & Subplots: The direction of Y-axis is 79° east from true north.

KS-DB1

Forest age: S.

Disturbance: The forest was used as a coppice forest and abandoned in 1970s. Mass mortalities of pine trees by Pine wilt disease and of Fagaceae trees by Japanese oak wilt have occurred since 1990s and 2000s, respectively (Homma K. personal communication).

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: NA.

Soil pH: NA.

Bedrock: NA.

Snow depth: 0.5 m (Homma K. personal observation).

Dwarf bamboo as understory vegetation: None (Homma K. personal observation).

Maximum canopy height: NA.

Plot & Subplots: The shape of plot is 50×50 m. The direction of Y-axis is 67° west from true north. All subplots are outside of the plot.

Remarks: Grasslands, croplands and roads are 300 m northeast, 50 m north, 250 m southwest, 300 m south of the plot. A road and a coast is 250 m southeast of the plot.

KS-DB2

Forest age: S. Disturbance: NA. Soil type FAO: Humic Cambisols. Soil type Forest Soil Division: NA. Soil pH: NA. Bedrock: NA. Snow depth: NA. Dwarf bamboo as understory vegetation: NA. Maximum canopy height: NA. Plot & Subplots: NA. Remarks: Grasslands (abandoned paddy fields) and a pasture are 150 m east and 600 m southwest of

OG-DB1

Forest age: OG.

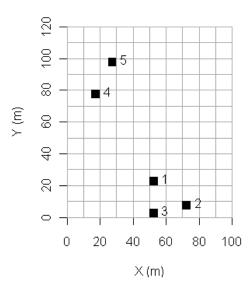
Disturbance: Although the forest is an old-growth forest, human disturbances such as fire, grazing, and selective cutting took place until 1930s at surrounding forests. Remains of charcoal making were found around the plot (Masaki et al. 1999*, Suzuki 2002*).

the plot, respectively. Water reservoirs are 150 m west and 400 m south of the plot.

Soil type FAO: Ochric Cambisols.

Soil type Forest Soil Division: Brown forest soil partly black or gley soil (Masaki et al. 1999*).

Soil pH: 4.7-6.2 (Yoshinaga et al. 2002*).


Bedrock: Metamorphic rock, volcanic ejacta (Yoshinaga et al. 2002*).

Snow depth: 0.5 m (Masaki et al. 1999*).

Dwarf bamboo as understory vegetation: Patchy distribution of Sasamorpha borealis and Sasa nipponica (Suzuki 2002*).

Maximum canopy height: About 35 m (Nakashizuka 2002*).

Plot & Subplots: The 1.2-ha (100×120 m) plot is a part of a 6-ha permanent plot (see Nakashizuka and Matsumoto 2002). The direction of Y-axis is 100° west from true north.

Remarks: Grasslands and croplands are 400 m north and 500 m southwest of the plot. *Acknowledgements*: Grants in support came from the Ministry of Agriculture, Forestry and Fishery, and the Ministry of Education, Science, Sports and Culture.

KY-DB1

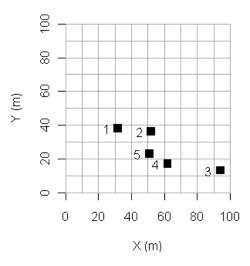
Forest age: OG.

Disturbance: A light selective cutting probably occurred because remains of charcoal making were found around the plot (Watanabe 1993; Ida 2013).

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Brown forest soil (Ida H. personal observation).

Soil pH: NA.


Bedrock: Plateau originated from lava flow (Ida 2013).

Snow depth: 3–4 m (Ida 2013).

Dwarf bamboo as understory vegetation: Understory is dominated by 1.5 m high *Sasa kurilensis* and *Sasa senanensis* (Peters et al. 1992; Ida 2013).

Maximum canopy height: 25 m (Watanabe 1994).

Plot & Subplots: The direction of Y-axis is 97° west from true north. Subplots were slightly moved after the census in 2006.

Remarks: Grasslands and pastures are 100 m west and 350 m south of the plot.

OT-EC1

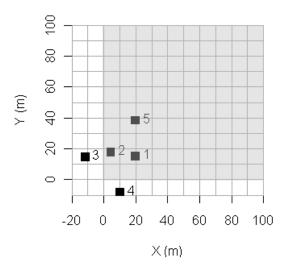
Forest age: OG.

Disturbance: No record of human disturbance (Ida H. personal observation).

Soil type FAO: Humo-Ferric (Gleyic) Podzols.

Soil type Forest Soil Division: Wet humus podzolic partly dry podzolic or moderately moist brown forest soil (Takai et al. 1976).

Soil pH: 3.8-4.5 (Takai et al. 1976).


Bedrock: Deposition of andesite and volcanic mudflow (Takai et al. 1976).

Snow depth: 2 m (Ida H. personal observation).

Dwarf bamboo as understory vegetation: Understory is dominated by 1 m high *Sasa kurilensis* (Kuroiwa and Watanabe 1997*).

Maximum canopy height: 22 m (Kuroiwa and Watanabe 1997*).

Plot & Subplots: The direction of Y-axis is 3° west from true north.

Grayed area indicates the permanent plot for tree census of which data were published in Ishihara et al. (2011).

Remarks: Grasslands, wetlands, ski slopes and a road are 600 m west to southwest of the plot.

OY-DB1

Forest age: OG. 254-year-old tree was recorded in 1988 (Sakio 1997*).

Disturbance: Fraxinus platypoda established after a land slide caused by an earthquake in 1770 to

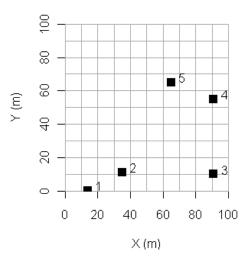
1790 (Sakio 1997*). No record of logging (Kubo et al. 2005*).

Soil type FAO: Humo-Ferric Podzols.

Soil type Forest Soil Division: Sand, gravel, rock (Sakio 1997*).

Soil pH: NA.

Bedrock: Greywacke, sandstone (Sakio 1997*).


Snow depth: 0.3 m (Sakio 1997*).

Dwarf bamboo as understory vegetation: 2 m height Sasamorpha borealis dominates at slope (Sakio

H. personal observation).

Maximum canopy height: 35 m (Sakio H. unpublished data).

Plot & Subplots: The direction of Y-axis is 116° west from true north.

Remarks: The plot includes a stream and was established in a riparian forest dominated by *Fraxinus* platypoda, *Pterocarya rhoifolia*, and *Cercidiphyllum japonicum* (Sakio et al. 2002*).

Acknowledgements: We thank Drs. Masako Kubo and Naoko Sashimura for the field works of the research site. Thanks are also due to the members of Mori to Mizu no Genryu Bunkajuku for their various assistances.

CC-DB1

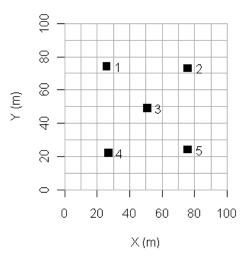
Forest age: OG.

Disturbance: No record of logging since the University forest was established in 1916.

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Moderately moist brown forest soil (University Forest in Chichibu 2000).

Soil pH: NA.


Bedrock: Sedimentary rock (University Forest in Chichibu 2000).

Snow depth: 0.2–0.3 m (Sawada et al. 2005*).

Dwarf bamboo as understory vegetation: None.

Maximum canopy height: 29 m (University Forest in Chichibu unpublished data).

Plot & Subplots: The direction of Y-axis is true north.

Remarks: A river flows 350 m southwest of the plot.

CC-DB2

Forest age: S. 65 years old in 2000 (University Forest in Chichibu 2000).

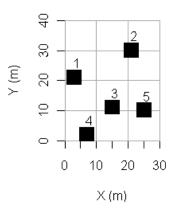
Disturbance: Regenerated naturally after a clear cutting event.

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Moderately moist to slightly wetted brown forest soil (University

Forest of Chichibu 2000).

Soil pH: NA.


Bedrock: Sedimentary rock (University Forest in Chichibu 2000).

Snow depth: 0.2–0.3 m (Sawada et al. 2005).

Dwarf bamboo as understory vegetation: Almost none.

Maximum canopy height: 22.8 m (University Forest in Chichibu unpublished data).

Plot & Subplots: The shape of plot is 30×40 m. The direction of Y-axis is 142° west from true north.

Remarks: Grasslands are 50 m north and 500 m southwest of the plot. Roads are 100 m northeast and 500m south of the plot.

AU-EC1

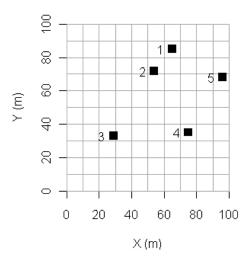
Forest age: OG. 230-year-old tree was recorded in 1980 (Tamai and Tempo 1990).

Disturbance: Since the establishment of Ashiu Experimental Forest in 1924, no human disturbance occurred (Yamanaka et al. 1993). Mass mortality of Fagaceae trees by Japanese oak wilt has occurred since 2002.

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Brown forest soil (Ueda et al. 1993).

Soil pH: 4.5 (Ueda et al. 1993).


Bedrock: Sandstone, slate, mudstone, shale, chert (Ueda et al. 1993; Yamanaka et al. 1993).

Snow depth: 2–3 m (Yamanaka et al. 1993).

Dwarf bamboo as understory vegetation: None since before sever herbivory by Sika deer occurred (Sakimoto M. personal observation).

Maximum canopy height: 25 m (Kawanabe et al. 1994; Sakimoto M. personal observation).

Plot & Subplots: The direction of Y-axis is 69° west from true north.

AI-BC1

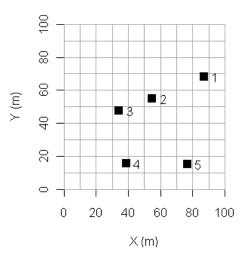
Forest age: S. Less than 100 years old (Shibano 2000*).

Disturbance: The forest established on the previously bare land due to fuel wood consumption (Shibano 2000*). *Chamaecyparis obtusa* trees were planted in 1917–1918 to prevent soil erosion. At present, the forest is composed of pine tree and broadleaf tree species that have naturally established. Mass mortality of pine trees by Pine wilt disease occurred in 1980s and late 2000s. In 2010 and 2011, many oak trees were attacked by ambrosia beetle *Platypus quercivorus*, which transport the pathogenic fungi *Raffaelea quercivora* causing Japanese oak wilt.

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Moderately moist brown forest soil (Moroto et al. 1987).

Soil pH: 4.5-5.1 (Moroto et al. 1987).


Bedrock: Deeply weathered granite (Moroto et al. 1987).

Snow depth: 0.101 m on average between 1966 and 1999 (University Forest in Aichi, the University of Tokyo unpublished data).

Dwarf bamboo as understory vegetation: None.

Maximum canopy height: 20 m (Ariyakanon et al. 2000).

Plot & Subplots: The direction of Y-axis is true north. All subplots were relocated from outside to inside the plot after the census in 2004. Subplot 1, 3, 4 and 5 were moved several meters after the census in 2009.

Remarks: Roads are 100 m south and 200 m north of the plot. Open lands and some buildings are 200 m west of the plot.

Acknowledgements: We thank Haruo Sawada, Yukiko Kamata, Masaki Matsui, Takehiko Tsukamoto, Yoshihide Hara, Kenji Yanase, Nobuyo Mizuno, Dr. Hirofumi Shibano and Dr. Noriko Iwai for the field work.

KG-EC1

Forest age: S. About 90 years old (Sakimoto et al. 2009b*).

Disturbance: After mass mortality of dominant pine trees by Pine wilt disease in 1970s,

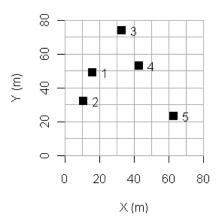
Chamaecyparis obtusa that formed the middle and lower layers have become dominant (Sakimoto M. unpublished data).

Soil type FAO: Gleysols.

Soil type Forest Soil Division: Dry brown forest soil (Tokuchi et al. 2002*).

Soil pH: NA.

Bedrock: Bedded chert with siliceous shale (Kimura et al. 1998).


Snow depth: Few cm (Kamigamo Experimental Station, Kyoto University

http://fserc.kyoto-u.ac.jp/kami/).

Dwarf bamboo as understory vegetation: None (Sakimoto M. personal observation).

Maximum canopy height: 20 m (Sakimoto M. personal observation).

Plot & Subplots: The shape of plot is 80×80 m. The direction of Y-axis is 180° east from true north.

Remarks: A grassland and a golf course are 50 m south and 500 m southwest of the plot, respectively. Urban areas are 150 m north, east and south of the plot.

WK-EC1

Forest age: OS. About 100 years old (Sakimoto et al. 2009a*).

Disturbance: Cut stumps created in 1920–1922 were found and the forest was used until the

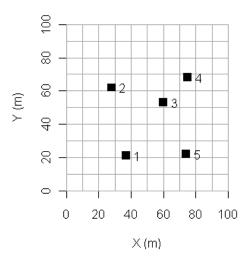
establishment of the University Forest in 1926 (Furuno et al. 1986).

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Moderately moist brown forest soil (Ueda et al. 1994).

Soil pH: 4.8–4.9 (Ueda et al. 1994).

Bedrock: Sandstone, shale (Toda et al. 2000).


Snow depth: 0.3 m (Wakayama Forest Research Station, Kyoto University

http://fserc.kyoto-u.ac.jp/waka/).

Dwarf bamboo as understory vegetation: None (Sakimoto M. personal observation).

Maximum canopy height: 25-30 m (Sakimoto M. personal observation).

Plot & Subplots: The direction of Y-axis is 30° east from true north.

IC-BC1

Forest age: OG. Maximum tree age is about 300 years old (Sakai T. unpublished data).

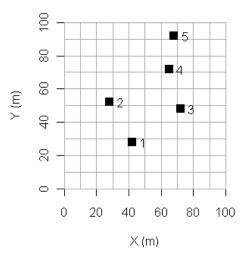
Disturbance: Chamaecyparis obtusa trees were cut selectively in 1985-1986 at the ridge (Sakai et al.

2006*. Sakai T. personal communication).

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Moderately moist to weakly dried brown forest soil, dry podzolic soil (Hirai et al. 2007*).

Soil pH: 3.6-5.1 (Hirai et al. 2007*).


Bedrock: Sandstone, mudstone (Sakai et al. 2006*).

Snow depth: 0.15 m (Sakai T. personal observation).

Dwarf bamboo as understory vegetation: None (Sakai T. personal observation).

Maximum canopy height: 41 m (Sakai et al. 2006*).

Plot & Subplots: The direction of Y-axis is 142° west from true north.

Acknowledgements: We thank Tatsuro Kawasaki, Ryuichi Tabuchi and Atsushi Sakai for setup and maintenance of the research site. Thanks are also due to the members of Shikoku Research Center, Forestry and Forest Products Research Institute for their various assistances.

SD-EB1

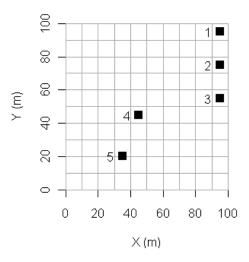
Forest age: OG. Probably >150 years old (Kuramoto and Okuda 2005*).

Disturbance: NA.

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Moderately moist to weakly dried brown forest soil (Kochi Regional Forestry Office, 1964).

Soil pH: NA.


Bedrock: Plutonic rock (Kuramoto and Okuda 2005*).

Snow depth: 0 m (Kuramoto S. personal observation).

Dwarf bamboo as understory vegetation: None (Kuramoto S. personal observation).

Maximum canopy height. NA.

Plot & Subplots:

Remarks: A road is 250 m west of the plot. Coasts are 1100 m southwest and 1300 m east of the plot. *Acknowledgements*: We thank Shiro Okuda, and the staffs of Shikoku Research Center, Forestry and Forest Products Research Institute for their various assistances. Thanks are also due to foresters of Tosashimizu Forest Cooperative, and Tosashimizu National Forest Office for their assistance in the plot installation and the tree census.

AY-EB1

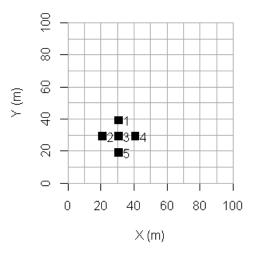
Forest age: OG.

Disturbance: No record of human disturbance (Tanouchi and Yamamoto 1995*). The forest experienced typhoon disturbance in 1993, 2004 and 2005 (Saito and Sato 2007*).

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Dry, moderately moist, or moderately moist drier subtype brown forest soil (Sato et al. 1999*).

Soil pH: NA.


Bedrock: Shale, sandstone, partly covered by pumice stone from volcanic eruption (Ohnuki et al. 1998*; Sato et al. 1999*).

Snow depth: 0 m (Masaki et al. 1999*).

Dwarf bamboo as understory vegetation: None (Saito S. personal observation).

Maximum canopy height: 30 m (Saito and Sato 2007*).

Plot & Subplots: The 1-ha plot is a part of a 4-ha permanent plot. The direction of Y-axis is 166° west from true north.

Remarks: A road and a river are 450 m northeast of the plot.

TN-EB1

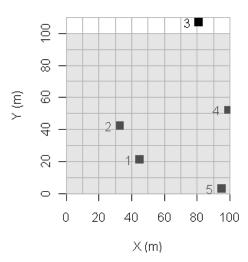
Forest age: S. 87 years old (Kubota and Takagi 2007*).

Disturbance: The forest regenerated in 1924 (Kubota and Takagi 2007*).

Soil type FAO: Andosols.

Soil type Forest Soil Division: Moderately moist brown soil (Takagi M. unpublished data).

Soil pH: 5.7 (Takagi M. unpublished data).


Bedrock: Shale (Endo 1958).

Snow depth: 0 m (Takagi M. personal observation).

Dwarf bamboo as understory vegetation: None (Takagi M personal observation).

Maximum canopy height: 25 m (Takagi M unpublished data).

Plot & Subplots: The direction of Y-axis is 6° east from true north.

Grayed area indicates the permanent plot for tree census of which data were published in Ishihara et al. (2011).

Acknowledgements: We thank the staff of University of Miyazaki Tano Forest Science Station for the field work.

TN-EB2

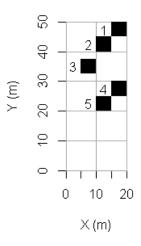
Forest age: S.

Disturbance: NA.

Soil type FAO: Residual Regosols.

Soil type Forest Soil Division: NA.

Soil pH: NA.


Bedrock: Sandstone (Miyazaki Prefecture 1992).

Snow depth: 0 m (Kubota K. personal observation).

Dwarf bamboo as understory vegetation: None (Kubota K. personal observation).

Maximum canopy height: 9 m (Kubota K. personal observation).

Plot & Subplots: The shape of plot is 20×50 m.

Remarks: The plot was established in a coastal scrub forest dominated by *Litsea japonica*, *Ardisia sieboldii*, *Daphniphyllum teijsmannii* and *Rhaphiolepis indica*. A coast is 50 m south of the plot. *Acknowledgements*: We thank the staff of University of Miyazaki Tano Forest Science Station for the field work.

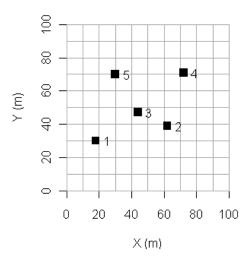
AM-EB1

Forest age: OS. About 140 years old.

Disturbance: Remains of charcoal making were found in the plot. Protected from human disturbance for 100 years as a reserve (Ishida et al. 2008).

Soil type FAO: Humic Cambisols.

Soil type Forest Soil Division: Weakly dried to moderately moist yellow soil at the valley (Ishida K. personal observation).


Soil pH: NA.

Bedrock: Shale partly sandstone (Ishida K. personal observation).

Snow depth: None (Ishida K. personal observation).

Dwarf bamboo as understory vegetation: None (Ishida K. personal observation).

- *Maximum canopy height*: 20 m (Kumamoto Forest Office and Japan Forest Technology Association 1997).
- *Plot & Subplots*: The direction of Y-axis is 175° east from true north. Subplots were slightly moved after the first pitfall trapping in 2005.

YN-EB1

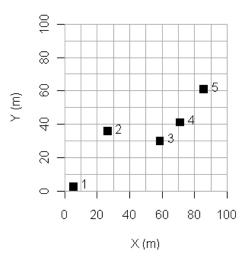
Forest age: OS.

Disturbance: Human disturbance such as selective cutting occurred until 1950s (Enoki 2003*; Saito 2011).

Soil type FAO: Helvic Acrisols.

Soil type Forest Soil Division: Weakly dried to moderately moist yellow soil (Yamamori et al. 1986).

Soil pH: 4.1-4.3 (Yamamori et al. 1986).


Bedrock: Sandstone and slate (Enoki 2003*).

Snow depth: 0 m.

Dwarf bamboo as understory vegetation: Pleioblastus linearis distributed at ridges (Takashima A. personal observation).

Maximum canopy height: 20 m (Shinzato et al. 1986).

Plot & Subplots: The direction of Y-axis is 40° west from true north.

- *Remarks*: The census was conducted in additional subplots numbered 6-8 in 2007. The subplot numbers were changed after the census in 2007: subplot 1, 3, 5, 6 and 7 in 2007 correspond to subplot 1, 2, 3, 4 and 5 since 2008, respectively. Data of beetle, organic layer and mineral soil in the latest 3 years are not available in this dataset.
- *Acknowledgements*: We thank the staff of Yona field, Subtropical Field Science Center, Faculty of Agriculture, University of the Ryukyus.

Literature Cited

- Ariyakanon N, Numamoto S, Suzuki M (2000) Sixty-year decreasing trend of bare land in Shirasaka watershed, University Forest in Aichi, revealed by aerial photography. Bull Tokyo Univ For 103:339-348
- Dudal R (1968) Definitions of soil units for the soil map of the world. World Soil Resources Reports No. 33, FAO, Rome
- Endo T (1958) Report of the geological survey of the Tano Instructional Forest of Miyazaki University (in Japanese). Bull Miyazaki Univ For 2:1-25
- Enoki T (2003) Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan. Ecol Res 18:103-113
- Forest Soil Division (1976) Classification of forest soil in Japan (1975) (in Japanese with English summary). Bull Gov For Exp Stn 280:1-28

- Furuno T, Uenishi Y, Uenishi K (1986) Investigations on the productivity of Japanese fir (*Abies firma* Sieb. et Zucc.) and hemlock (*Tsuga sieboldii* Carr.) stands in Kyoto University Forest in Wakayama (VII) Profile of the natural reservation forest in compartment 9 (in Japanese). Bull Kyoto Univ For 57:60-75
- Hirai K, Kaneko S, Takahashi M (2007) Nitrogen mineralization of forest soil along the climate in Japan: estimation of rate of nitrogen mineralization in the field by soil properties, temperature and soil type (in Japanese with English summary). Jpn J For Environ 49:123-131
- Hiura T, Fujito E, Ishii T, Naniwa A, Sugata S, Ishida K, Murakami M, Kato E, Maeno H,
 Fukushima Y, Sakai T (1998) Stand structure of a deciduous broad-leaved forest in Tomakomai
 Experimental Forest, based on a large-plot data (in Japanese with English abstract). Res Bull Coll
 Exp For Hokkaido Univ 55:1-10
- Hoshizaki K, Suzuki W, Sasaki S (1997) Impacts of secondary seed dispersal and herbivory on seedling survival in *Aesculus turbinata*. J Veg Sci 8:735-742
- Ida H (2013) Forest structure in a beech (*Fagus crenata* Blume) stand on a 1-ha permanent plot for the Monitoring Sites 1000 Project in Kayanodaira, central Japanese snowbelt. Bull Inst Nature Edu in Shiga Heights, Shinshu Univ 50:33-40
- Igarashi Y (1987) Vegetational succession in the Tomakomai Experiment Forest area (in Japanese with English summary). Res Bull Coll Exp For Hokkaido Univ 44:405-427
- Ishida K, Kawaguchi H, Torikai H, Takashi M, Kawaguchi K (2008) Result of forest survey at Kinsakubaru national forest in Amami Island and ecosystem managements from the view point of mast seeding in *Castanopsis sieboldii* (in Japanese). Jpn For Soc Annu Meet Database 119:4
- Ishihara MI, Suzuki SN, Nakamura M, Enoki T, Fujiwara A, Hiura T, Homma K, Hoshino D, Hoshizaki K, Ida H, Ishida K, Itoh A, Kaneko T, Kubota K, Kuraji K, Kuramoto S, Makita A, Masaki T, Namikawa K, Niiyama K, Noguchi M, Nomiya H, Ohkubo T, Saito S, Sakai T, Sakimoto M, Sakio H, Shibano H, Sugita H, Suzuki M, Takashima A, Tanaka N, Tashiro N, Tokuchi N, Yoshida T, Yoshida Y (2011) Forest stand structure composition and dynamics in 34 sites over Japan. Ecol Res 26:1007-1008
- Kawanabe S, Ando M, Sakai T, Wada S (1994) The dynamics of natural forest on cool temperate deciduous forest zone mixing Sugi (*Cryptomeria japonica*) trees (II) - Studies on stand structure of Masukami A and B plots at Ashiu- (in Japanese). Rep Kyoto Univ For 26:66-75

- Kimura K, Yoshioka T, Imoto N, Tanaka S, Musashino M, Takahashi Y (1998) Geology of theKyoto-Tohokubu district (in Japanese with English summary). With geological Sheet Map at 1:50,000. Geological Survey of Japan, Tsukuba, pp 89
- Kochi Regional Forestry Office (1964) Regional forest soil survey report, No. 3 (Shimizu) (in Japanese). pp 45
- Kubo M, Sakio H, Shimano K, Ohno K (2005) Age structure and dynamics of *Cercidiphyllum japonicum* sprouts based on growth ring analysis. For Ecol Manage 213:253-260
- Kubota K, Takagi M (2007) Long-term forest dynamic research site at an evergreen broadleaf secondary forest in Miyazaki University Forests (in Japanese). Ann Rep Field Sci Cent, Fac Agric, Univ Miyazaki 6:57-61
- Kumamoto Forest Office, Japan Forest Technology Association (1997) Research report on the preservation of *Scolopax mira* and rare wildlife species (in Japanese, title translated by the authors). Kumamoto Forest Office, Kumamoto
- Kuramoto S, Okuda S (2005) Species composition and size structure of Sadayama Forest Reserve, an old-growth evergreen broadleaved forest in lower mountainous area (in Japanese). Ann Rep Shikoku Res Cent FFPRI 46:20-22
- Kuroiwa Y, Watanabe R (1997) Forest structure of a subalpine coniferous forest at Otanomousutaira, Shigakogen. Bull Inst Nat Educ in Shiga Heights, Shinshu Univ 34:11-22
- Masaki T, Tanaka H, Tanouchi H, Sakai T, Nakashizuka T (1999) Structure, dynamics and disturbance regime of temperate broad-leaved forests in Japan. J Veg Sci 10:805-814
- Mishima T, Taniguchi S, Taniguchi M, Hishinuma Y (1958) The actual states of wind damage in the Tomakomai Experimental Forest of Hokkaido University (II) (on the natural forest) (in Japanese with English summary). Res Bull Coll Exp For Hokkaido Univ 19:1-39

Miyazaki prefecture (1992) Geological map at 1: 200,000. Miyazaki prefecture, Miyazaki

Moroto K, Mashimo Y, Haruta Y (1987) Soil properties and growth of Japanese red pine (*Pinus densiflora*) in the hilly and low-mountainous region of Central Japan (in Japanese with English summary). J Jpn For Soc 69:371-378

- Nakashizuka T (2002) Disturbance regimes. In: Nakashizuka T, Matsumoto Y (eds) Diversity and interaction in a temperate forest community –Ogawa Forest Reserve of Japan. Springer, Tokyo, pp 67-80
- Nakata M (1994) Vegetation and soils of *Cryptomeria japonica* natural stands at Sado Experiment Forest of Niigata University (in Japanese). Res Bull Niigata Univ For 27:141-158
- Ohnuki Y, Sato T, Fujimoto K, Inagaki M (1998) Dynamics and physical properties of surficial soil and microtopography at Aya evergreen broad-leaved forest, southwestern Japan (in Japanese with English summary). Jpn J For Environ 40:67-74
- Ozawa M, Shibata H, Satoh F, Sasa K (2001) Annual element budget of soil in snow-dominated forested ecosystem. Water Air Soil Pollut 130:703-708
- Peters R, Nakashizuka T, Ohkubo T (1992) Regeneration and development in beech-dwarf bamboo forest in Japan. For Ecol Manage 55:35-50
- Saito K (2011) Forest age distribution in Kunigami-village, Okinawa, based on forest register data (in Japanese). Pap Environ Inf Sci 25:245-250
- Saito S, Sato T (2007) Characteristics of typhoon damage to major tree species in a Lucidophyllous forest: a comparison of tree species responses to several typhoons at the Aya long-term ecological research site (in Japanese with English summary). J Jpn For Soc 89:321-328
- Sakai A, Sakai T, Kuramoto S, Sato S (2006) Soil seed banks of an old-growth forest and an adjacent conifer plantation in a medium altitude region in Shikoku, Japan (in Japanese with English summary). Jpn J For Environ 48:85-90
- Sakimoto M, Angeles-Perez G, Hirayama K (2009a) Spatial pattern, response to topology and coexistence of *Abies firma* and *Tsuga sieboldii* (in Japanese). Abstr Annu Meet Soc Veg Sci 14:42
- Sakimoto M, Morishita K, Sakanoue N (2009b) Spatial pattern and regeneration of *Chamaecyparis obtusa* in a natural forest of hilly area, Kyoto city (in Japanese). Abstr Annu Meet Kansai Branch, Jpn For Soc 60:50
- Sakio H (1997) Effects of natural disturbance on the regeneration of riparian forests in a Chichibu Mountains, central Japan. Plant Ecol 132:181-195

- Sakio H, Kubo M, Shimano K and Ohno K (2002) Coexistence of three canopy tree species in a riparian forest in the Chichibu Mountains, central Japan. Folia Geobotanica 37:45-61
- Sato T, Kominami Y, Saito S, Niiyama K, Manabe T, Tanouchi H, Noma N, Yamamoto S (1999) An introduction to the Aya Research Site, a Long-Term Ecological Research site, in a warm temperate evergreen broad-leaved forest ecosystem in southwestern Japan: Research topics and design. Bull Kitakyushu Mus Nat His 18:157-180
- Sawada H, Ohkubo T, Kaji M, Oomura K (2005) Spatial distribution and topographic dependence of vegetation types and tree populations of natural forests in the Chichibu Mountains, Central Japan (in Japanese with English summary). J Jpn For Soc 87:293-303
- Shibano H (2000) Stand structure at Shirasaka watershed long-term research plot in University Forest in Aichi, the University of Tokyo (in Japanese). In: Kaji M (ed) Study on forest ecosystems in long-term research plot. Res Rep of Grant-in-Aid for Scientific Research (B) 64-82
- Shibata H, Ichikawa K, Nomura M, Sato F, Sasa K, Isii Y, Kobayashi D (2002) Elemental budgets of forest watershed at cold snowy region (in Japanese with English abstract). J Jpn Assoc Hydrol Sci 32:49-56
- Shibata H, Kirikae M, Tanaka Y, Sakuma T, Hatano R (1998) Proton budgets of forest ecosystems on volcanogenous regosols in Hokkaido, Northern Japan. Water Air Soil Pollut 105:63-72
- Shinzato T, Taba K, Hirata E, Yamamori N (1986) Regeneration of *Castanopsis sieboldii* forest: 1. Studies on stratification and age structure of a natural stand (in Japanese with English summary). Sci Bull Fac Agric Univ Ryukyus 33:245-256
- Suzuki SN, Ishihara MI, Nakamura M, Abe S, Hiura T, Homma K, Higa M, Hoshino D, Hoshizaki K, Ida H, Ishida K, Kawanishi M, Kobayashi K, Kuraji K, Kuramoto S, Masaki T, Niiyama K, Noguchi M, Nomiya H, Saito S, Sakai T, Sakimoto M, Sakio H, Sato T, Shibano H, Shibata M, Suzuki M, Takashima A, Tanaka H, Takagi M, Tashiro N, Tokuchi N, Yoshida T, Yoshida Y (2012) Nation-wide litter fall data from 21 forests of the Monitoring Sites 1000 Project in Japan. Ecol Res 27:989-990
- Suzuki W (2002) Forest vegetation in and around Ogawa Forest Reserve in relation to human impact.
 In: Nakashizuka T, Matsumoto Y (eds) Diversity and interaction in a temperate forest community
 –Ogawa Forest Reserve of Japan. Springer, Tokyo, pp 27-41

- Suzuki W, Osumi K, Masaki T, Takahashi K, Daimaru H, Hoshizaki K (2002) Disturbance regimes and community structures of a riparian and an adjacent terrace stand in the Kanumazawa Riparian Research Forest, northern Japan. For Ecol Manage 157:285-301
- Takai Y, Kanazawa S, Asami T, Takeshima S, Kawashima N (1976) Characteristics of soil organic matter and soil respiration in subalpine coniferous forest of Mt. Shigayama (Part 1) : On soil types and chemical properties of soil (in Japanese). Jpn J Soil Sci Plant Nutr 47:33-38
- Tamai S, Tempo Y (1990) Age structure of trees in a natural cool-temperate forest (in Japanese with English summary). J Jpn For Soc 72:292-303
- Tanouchi H, Yamamoto S (1995) Structure and regeneration of canopy species in an old-growth evergreen broad-leaved forest in Aya district, southwestern Japan. Plant Ecol 117:51-60
- Toda H, Sasa K, Sato F, Shibata H, Nomura M, Ichikawa K, Fujito E, Takanishi T, Seiwa K, Tsukahara H, Iida T, Taniguchi N, Nakata M, Kuwabara S, Uchida T, Haruta Y, Inoue M, Yagi H, Tsukagoshi T, Kuraji K, Fukuda M, Ono H, Suzuki M, Imaizumi Y, Yamaguchi N, Takenaka C, Yurugi Y, Kawanabe S, Ando M, Nakanishi A, Nishimura K, Yamasaki M, Nagayama Y, Doi N, Katagiri S, Kofuji R, Shinmura Y, Inoue S, Ezaki T, Kohno S, Fujihisa M, Iwamatsu I, Imayasu K, Nakamura S, Tsukamoto J, Nogami K, Enoki T (2000) Stream water chemistry of university forests over Japan (in Japanese with English summary). J Jpn For Soc 82:308-312
- Tokuchi N, Fujimaki R, Terai M (2002) Soil nitrogen dynamics of temperate conifer forest in central Japan The case study of Japanese cypress forest at Kamigamo Experimental Forest (in Japanese with English summary). For Res 74:47-52
- Ueda S, Ando M, Kanzaki K (1993) Forest soil surveys of the Kyoto University Forest in Ashiu II. Soil types, grain size, and chemical and physical properties of soils. (in Japanese with English summary). Bull Kyoto Univ For 65:94–112
- Ueda S, Ando M, Takeuchi M (1994) Forest soil surveys of natural Japanese fir (*Abies firma* Sieb. et Zucc.) and hemlock (*Tsuga sieboldii* Carr.) stands and secondary broad-leaved stands in Kyoto University Forests in Wakayama (in Japanese). Rep Kyoto Univ For 26:109–119
- University Forest in Chichibu, the University of Tokyo (2000) The ninth forest inventory of the University Forest in Chichibu, the University of Tokyo (in Japanese). University Forest in Chichibu, the University of Tokyo, Chichibu

- Watanabe R (1993) Forest structure of Kayanodaira beech forest of the Institute for Nature Study, Shinshu University 2: Growth of forest trees within a period (1982-1992). Bull Inst Nat Educ in Shiga Heights, Shinshu Univ 30:33-41
- Watanabe R (1994) Studies on the Fagus crenata forest in Kayanodaira 5: Forest dynamics of primary and secondary forests, 1979-1992. Bull Inst Nat Educ in Shiga Heights, Shinshu Univ 31:9-16
- Yamamori N, Hirata E, Aramoto M, Sunakawa S, Asato M (1986) Studies on the working techniques by selection system for the broad leaved forest in the subtropics. (XII) Physical and chemical properties of soil at experimental plots (in Japanese with English summary). Sci Bull Fac Agric Univ Ryukyus 33:229-236
- Yamanaka N, Matumoto A, Oshima Y, Kawanabe S (1993) Stand structure of Mondori-Dani watershed, Kyoto University Forest in Ashiu (in Japanese). Bull Kyoto Univ For 65:63-76
- Yoshinaga S, Takahashi M, Aizawa S (2002) Landforms and soil characteristics in Ogawa Forest Reserve. In: Nakashizuka T, Matsumoto Y (eds) Diversity and interaction in a temperate forest community –Ogawa Forest Reserve of Japan. Springer, Tokyo, pp 19-26